
If $\alpha ,\beta $ are the roots of the equation ${x^2} + px - q = 0$ and $\gamma ,\delta $ are the roots of the equation ${x^2} + px + r = 0$, then the value of $(\alpha - \gamma )(\alpha - \delta )$ is
$
A)p + r \\
B)p - r \\
C)q - r \\
D)q + r \\
$
Answer
606k+ views
Hint: Here to solve this problem we get the given value we need to know the sum of the roots and products of roots of given quadratic equations. They have mentioned the roots of given equations.
Complete step-by-step answer:
We know that if there is any quadratic equation in the form $a{x^2} + bx + c = 0$.Then we know that
Sum of roots $ = -\dfrac{{{\text{ coefficient of x}}}}{{{\text{coefficient of }}{{\text{x}}^2}}}$
Product of roots $ = \dfrac{{{\text{constant term}}}}{{{\text{coefficient of }}{{\text{x}}^2}}}$
Here given equation is ${x^2} + px - q = 0$ whose roots are $\alpha ,\beta $
Now by using the above concept
Sum of the roots $\left( {\alpha + \beta } \right)$ $ = \dfrac{{ - p}}{1} = - p$
Product of roots $\left( {\alpha .\beta } \right) = \dfrac{{ - q}}{1} = - q$
Here it is also mentioned $\gamma ,\delta $ are the root of equation ${x^2} + px + r = 0$.
Sum of the roots $\left( {\gamma + \delta } \right) = \dfrac{{ - p}}{1} = - p$
Product of roots $\left( {\gamma \delta } \right) = \dfrac{r}{1} = r$
Now here we have to find the value of $(\alpha - \gamma )(\alpha - \delta )$
$ \Rightarrow \left( {\alpha - \gamma } \right)\left( {\alpha - \delta } \right)$
$ \Rightarrow {\alpha ^2} - \alpha (\gamma + \delta ) + \gamma \delta $
Since we the value $\gamma + \delta = - p$ and $\gamma \delta = r$.So now on substituting the value and further simplification we get
$ \Rightarrow q + r$
Option D is the correct one .
Note: In this problem before finding the value of given term we have got the required value of to solve the given term. So get the value we have used the sum of roots and products of roots of the given two functions. Here we have to concentrate on finding the sum of roots of the equation and product roots of the equation by using the formulas.
Complete step-by-step answer:
We know that if there is any quadratic equation in the form $a{x^2} + bx + c = 0$.Then we know that
Sum of roots $ = -\dfrac{{{\text{ coefficient of x}}}}{{{\text{coefficient of }}{{\text{x}}^2}}}$
Product of roots $ = \dfrac{{{\text{constant term}}}}{{{\text{coefficient of }}{{\text{x}}^2}}}$
Here given equation is ${x^2} + px - q = 0$ whose roots are $\alpha ,\beta $
Now by using the above concept
Sum of the roots $\left( {\alpha + \beta } \right)$ $ = \dfrac{{ - p}}{1} = - p$
Product of roots $\left( {\alpha .\beta } \right) = \dfrac{{ - q}}{1} = - q$
Here it is also mentioned $\gamma ,\delta $ are the root of equation ${x^2} + px + r = 0$.
Sum of the roots $\left( {\gamma + \delta } \right) = \dfrac{{ - p}}{1} = - p$
Product of roots $\left( {\gamma \delta } \right) = \dfrac{r}{1} = r$
Now here we have to find the value of $(\alpha - \gamma )(\alpha - \delta )$
$ \Rightarrow \left( {\alpha - \gamma } \right)\left( {\alpha - \delta } \right)$
$ \Rightarrow {\alpha ^2} - \alpha (\gamma + \delta ) + \gamma \delta $
Since we the value $\gamma + \delta = - p$ and $\gamma \delta = r$.So now on substituting the value and further simplification we get
$ \Rightarrow q + r$
Option D is the correct one .
Note: In this problem before finding the value of given term we have got the required value of to solve the given term. So get the value we have used the sum of roots and products of roots of the given two functions. Here we have to concentrate on finding the sum of roots of the equation and product roots of the equation by using the formulas.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

