
If \[\alpha \] and \[\beta \] are the zeroes of a polynomial such that \[\alpha +\beta =6\] and \[\alpha \beta =4,\] then write the quadratic polynomial.
Answer
457.8k+ views
Hint:
We are asked to calculate the quadratic polynomial whose sum of the zero is 6 and the product of the zero is 4. So, we will take a quadratic polynomial and we will use the relation between zeroes and coefficient of the polynomial \[a{{x}^{2}}+bx+c=0\] to firm the required polynomial. We will use \[\alpha +\beta =\dfrac{-b}{a}\] and \[\alpha \beta =\dfrac{c}{a}\] to form the equation of the quadratic polynomial.
Complete step by step answer:
We are given that for any polynomial, \[\alpha \] and \[\beta \] are the roots (zeroes) of that polynomial, and also we are given that the sum of the zeroes is 6, i.e. \[\alpha +\beta =6\] and we have the product of the zero as 4, i.e. \[\alpha \beta =4.\] Now, we are asked to find the required polynomial which will satisfy the given condition. To find the polynomial, we should know about the relation between the roots (zeroes) and the quadratic polynomial.
So, we will learn about these relations and we know generally the quadratic polynomial is given as \[a{{x}^{2}}+bx+c=0\] where \[a\ne 0.\]
Now, we also know that if \[\alpha \] and \[\beta \] are the zero of \[a{{x}^{2}}+bx+c=0\] then the sum of roots will be
\[\text{Sum of roots}=\dfrac{-\text{coefficent of x}}{\text{coefficent }{{x}^{2}}}\]
\[\text{Product of roots}=\dfrac{\text{constant term}}{\text{coefficent }{{x}^{2}}}\]
Now, as the coefficient of x is b, the coefficient of \[{{x}^{2}}\] is a and the constant term is c, so we get,
\[\alpha +\beta =\dfrac{-b}{a}\]
\[\alpha \beta =\dfrac{c}{a}\]
Now as our equation is \[a{{x}^{2}}+bx+c=0\] so dividing each side by a, we get,
\[\dfrac{a}{a}{{x}^{2}}+\dfrac{b}{a}x+\dfrac{c}{a}=\dfrac{0}{a}\]
Simplifying we get,
\[\Rightarrow {{x}^{2}}+\left( \dfrac{b}{a} \right)x+\dfrac{c}{a}=0\]
As \[\dfrac{-b}{a}=\alpha +\beta \] so \[\dfrac{b}{a}=-\left( \alpha +\beta \right)\] and \[\dfrac{c}{a}=\alpha \beta .\]
So, our equation can be written as
\[{{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0\]
Now, as we have \[\alpha +\beta =6\] and \[\alpha \beta =4.\] So, using them in the above equation we get the quadrilateral polynomial as
\[{{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0\]
\[\Rightarrow {{x}^{2}}-\left( 6 \right)x+4=0\]
On simplifying, we get,
\[\Rightarrow {{x}^{2}}-6x+4=0\]
So, our required quadratic equation is \[{{x}^{2}}-6x+4=0.\]
Note:
Students need to remember that we have \[\alpha +\beta =\dfrac{-b}{a},\] always take care of the negative sign else we will get the wrong solution. Also, remember that \[a\ne 0\] that’s why we were able to divide the equation by a. If it is not mentioned that a is not equal to 0 then we cannot divide the term by a.
We are asked to calculate the quadratic polynomial whose sum of the zero is 6 and the product of the zero is 4. So, we will take a quadratic polynomial and we will use the relation between zeroes and coefficient of the polynomial \[a{{x}^{2}}+bx+c=0\] to firm the required polynomial. We will use \[\alpha +\beta =\dfrac{-b}{a}\] and \[\alpha \beta =\dfrac{c}{a}\] to form the equation of the quadratic polynomial.
Complete step by step answer:
We are given that for any polynomial, \[\alpha \] and \[\beta \] are the roots (zeroes) of that polynomial, and also we are given that the sum of the zeroes is 6, i.e. \[\alpha +\beta =6\] and we have the product of the zero as 4, i.e. \[\alpha \beta =4.\] Now, we are asked to find the required polynomial which will satisfy the given condition. To find the polynomial, we should know about the relation between the roots (zeroes) and the quadratic polynomial.
So, we will learn about these relations and we know generally the quadratic polynomial is given as \[a{{x}^{2}}+bx+c=0\] where \[a\ne 0.\]
Now, we also know that if \[\alpha \] and \[\beta \] are the zero of \[a{{x}^{2}}+bx+c=0\] then the sum of roots will be
\[\text{Sum of roots}=\dfrac{-\text{coefficent of x}}{\text{coefficent }{{x}^{2}}}\]
\[\text{Product of roots}=\dfrac{\text{constant term}}{\text{coefficent }{{x}^{2}}}\]
Now, as the coefficient of x is b, the coefficient of \[{{x}^{2}}\] is a and the constant term is c, so we get,
\[\alpha +\beta =\dfrac{-b}{a}\]
\[\alpha \beta =\dfrac{c}{a}\]
Now as our equation is \[a{{x}^{2}}+bx+c=0\] so dividing each side by a, we get,
\[\dfrac{a}{a}{{x}^{2}}+\dfrac{b}{a}x+\dfrac{c}{a}=\dfrac{0}{a}\]
Simplifying we get,
\[\Rightarrow {{x}^{2}}+\left( \dfrac{b}{a} \right)x+\dfrac{c}{a}=0\]
As \[\dfrac{-b}{a}=\alpha +\beta \] so \[\dfrac{b}{a}=-\left( \alpha +\beta \right)\] and \[\dfrac{c}{a}=\alpha \beta .\]
So, our equation can be written as
\[{{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0\]
Now, as we have \[\alpha +\beta =6\] and \[\alpha \beta =4.\] So, using them in the above equation we get the quadrilateral polynomial as
\[{{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0\]
\[\Rightarrow {{x}^{2}}-\left( 6 \right)x+4=0\]
On simplifying, we get,
\[\Rightarrow {{x}^{2}}-6x+4=0\]
So, our required quadratic equation is \[{{x}^{2}}-6x+4=0.\]
Note:
Students need to remember that we have \[\alpha +\beta =\dfrac{-b}{a},\] always take care of the negative sign else we will get the wrong solution. Also, remember that \[a\ne 0\] that’s why we were able to divide the equation by a. If it is not mentioned that a is not equal to 0 then we cannot divide the term by a.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE

The area of a 6m wide road outside a garden in all class 10 maths CBSE

What is the electric flux through a cube of side 1 class 10 physics CBSE

If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE

The radius and height of a cylinder are in the ratio class 10 maths CBSE

An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What constitutes the central nervous system How are class 10 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Explain the Treaty of Vienna of 1815 class 10 social science CBSE
