Answer
Verified
491.4k+ views
Hint: Use the formula ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$ and ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ to find the value of $\alpha \beta $ and the use the property that the quadratic expression with roots a and b is ${{x}^{2}}-\left( a+b \right)x+ab$.
Complete step-by-step answer:
We have ${{\alpha }^{3}}+{{\beta }^{3}}=-56$ and $\alpha +\beta =-2$
Using ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$, we get
$\left( \alpha +\beta \right)\left( {{\alpha }^{2}}-\alpha \beta +{{\beta }^{2}} \right)=-56$
Substituting the value of $\left( \alpha +\beta \right)$, we get
$-2\left( {{\alpha }^{2}}-\alpha \beta +{{\beta }^{2}} \right)=-56$
Using ${{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab$ , we get
$-2\left( {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta -\alpha \beta \right)=-56$
Substituting the value of $\left( \alpha +\beta \right)$, we get
$\begin{align}
& -2\left( {{\left( -2 \right)}^{2}}-2\alpha \beta -\alpha \beta \right)=-56 \\
& \Rightarrow -2\left( 4-3\alpha \beta \right)=-56 \\
\end{align}$
Dividing both sides by -2, we get
$\begin{align}
& \dfrac{-2\left( 4-3\alpha \beta \right)}{-2}=\dfrac{-56}{-2} \\
& \Rightarrow 4-3\alpha \beta =28 \\
\end{align}$
Subtracting 4 on both sides, we get
$\begin{align}
& 4-3\alpha \beta -4=28-4 \\
& \Rightarrow -3\alpha \beta =24 \\
\end{align}$
Dividing both sides by -3, we get
$\begin{align}
& \dfrac{-3\alpha \beta }{-3}=\dfrac{24}{-3} \\
& \Rightarrow \alpha \beta =-8 \\
\end{align}$
Using the property “The quadratic expression with roots a and b is ${{x}^{2}}-\left( a+b \right)x+ab$.”
We have the quadratic expression with roots $\alpha $ and $\beta $ is
$\begin{align}
& {{x}^{2}}-\left( -2 \right)x+\left( -8 \right) \\
& ={{x}^{2}}+2x-8 \\
\end{align}$
Hence option [d] is correct.
Note: [1] We can solve the above question using newton method also.
Let ${{P}_{n}}={{\alpha }^{n}}+{{\beta }^{n}}$ where $\alpha $ and $\beta $ are the roots of the equation ${{x}^{2}}+ax+b$ then we have
${{P}_{1}}=-a$,${{P}_{2}}+a{{P}_{1}}+2b=0$ and ${{P}_{n}}+a{{P}_{n-1}}+b{{P}_{n-2}}=0\forall n\ge 3$
Using we get
${{P}_{1}}=-a$
But ${{P}_{1}}=\alpha +\beta =-2$ we have -a = -2
Hence a = 2.
${{P}_{2}}+a{{P}_{1}}+2b=0$
Substituting the value of ${{P}_{1}}$ and “a” we get
$\begin{align}
& {{P}_{2}}+\left( 2 \right)\left( -2 \right)+2b=0 \\
& \Rightarrow {{P}_{2}}-4+2b=0 \\
\end{align}$
Transposing -4+2b to RHS we get
${{P}_{2}}=4-2b$
Put n = 3 in the recurrence ${{P}_{n}}+a{{P}_{n-1}}+b{{P}_{n-2}}=0$, we get
${{P}_{3}}+\left( 2 \right){{P}_{2}}+b{{P}_{1}}=0$
But ${{P}_{3}}={{\alpha }^{3}}+{{\beta }^{3}}=-56$
Substituting the value of ${{P}_{1}},{{P}_{2}}$ and ${{P}_{3}}$ we get
$\begin{align}
& -56+\left( 2 \right)\left( 4-2b \right)+b\left( -2 \right)=0 \\
& \Rightarrow -56+8-4b-2b=0 \\
& \Rightarrow -48-6b=0 \\
\end{align}$
Adding 6b on both sides, we get
$\begin{align}
& -48-6b+6b=0+6b \\
& \Rightarrow 6b=-48 \\
\end{align}$
Dividing both sides by 6, we get
$\begin{align}
& \dfrac{6b}{6}=\dfrac{-48}{6}=-8 \\
& \Rightarrow b=-8 \\
\end{align}$
Hence b = -8 and a = 2
Hence the quadratic expression is ${{x}^{2}}+ax+b={{x}^{2}}+2x-8$
[2] The derivation of the Newton's method is a direct result of the observation that if $\alpha $ is a root of quadratic expression ${{x}^{2}}+ax+b$ then ${{\alpha }^{n}}+a{{\alpha }^{n-1}}+b{{\alpha }^{n-2}}=0\forall n\ge 3$. Write a similar expression for $\beta $ and add the two equations to get the above recursive relation.
Complete step-by-step answer:
We have ${{\alpha }^{3}}+{{\beta }^{3}}=-56$ and $\alpha +\beta =-2$
Using ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$, we get
$\left( \alpha +\beta \right)\left( {{\alpha }^{2}}-\alpha \beta +{{\beta }^{2}} \right)=-56$
Substituting the value of $\left( \alpha +\beta \right)$, we get
$-2\left( {{\alpha }^{2}}-\alpha \beta +{{\beta }^{2}} \right)=-56$
Using ${{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab$ , we get
$-2\left( {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta -\alpha \beta \right)=-56$
Substituting the value of $\left( \alpha +\beta \right)$, we get
$\begin{align}
& -2\left( {{\left( -2 \right)}^{2}}-2\alpha \beta -\alpha \beta \right)=-56 \\
& \Rightarrow -2\left( 4-3\alpha \beta \right)=-56 \\
\end{align}$
Dividing both sides by -2, we get
$\begin{align}
& \dfrac{-2\left( 4-3\alpha \beta \right)}{-2}=\dfrac{-56}{-2} \\
& \Rightarrow 4-3\alpha \beta =28 \\
\end{align}$
Subtracting 4 on both sides, we get
$\begin{align}
& 4-3\alpha \beta -4=28-4 \\
& \Rightarrow -3\alpha \beta =24 \\
\end{align}$
Dividing both sides by -3, we get
$\begin{align}
& \dfrac{-3\alpha \beta }{-3}=\dfrac{24}{-3} \\
& \Rightarrow \alpha \beta =-8 \\
\end{align}$
Using the property “The quadratic expression with roots a and b is ${{x}^{2}}-\left( a+b \right)x+ab$.”
We have the quadratic expression with roots $\alpha $ and $\beta $ is
$\begin{align}
& {{x}^{2}}-\left( -2 \right)x+\left( -8 \right) \\
& ={{x}^{2}}+2x-8 \\
\end{align}$
Hence option [d] is correct.
Note: [1] We can solve the above question using newton method also.
Let ${{P}_{n}}={{\alpha }^{n}}+{{\beta }^{n}}$ where $\alpha $ and $\beta $ are the roots of the equation ${{x}^{2}}+ax+b$ then we have
${{P}_{1}}=-a$,${{P}_{2}}+a{{P}_{1}}+2b=0$ and ${{P}_{n}}+a{{P}_{n-1}}+b{{P}_{n-2}}=0\forall n\ge 3$
Using we get
${{P}_{1}}=-a$
But ${{P}_{1}}=\alpha +\beta =-2$ we have -a = -2
Hence a = 2.
${{P}_{2}}+a{{P}_{1}}+2b=0$
Substituting the value of ${{P}_{1}}$ and “a” we get
$\begin{align}
& {{P}_{2}}+\left( 2 \right)\left( -2 \right)+2b=0 \\
& \Rightarrow {{P}_{2}}-4+2b=0 \\
\end{align}$
Transposing -4+2b to RHS we get
${{P}_{2}}=4-2b$
Put n = 3 in the recurrence ${{P}_{n}}+a{{P}_{n-1}}+b{{P}_{n-2}}=0$, we get
${{P}_{3}}+\left( 2 \right){{P}_{2}}+b{{P}_{1}}=0$
But ${{P}_{3}}={{\alpha }^{3}}+{{\beta }^{3}}=-56$
Substituting the value of ${{P}_{1}},{{P}_{2}}$ and ${{P}_{3}}$ we get
$\begin{align}
& -56+\left( 2 \right)\left( 4-2b \right)+b\left( -2 \right)=0 \\
& \Rightarrow -56+8-4b-2b=0 \\
& \Rightarrow -48-6b=0 \\
\end{align}$
Adding 6b on both sides, we get
$\begin{align}
& -48-6b+6b=0+6b \\
& \Rightarrow 6b=-48 \\
\end{align}$
Dividing both sides by 6, we get
$\begin{align}
& \dfrac{6b}{6}=\dfrac{-48}{6}=-8 \\
& \Rightarrow b=-8 \\
\end{align}$
Hence b = -8 and a = 2
Hence the quadratic expression is ${{x}^{2}}+ax+b={{x}^{2}}+2x-8$
[2] The derivation of the Newton's method is a direct result of the observation that if $\alpha $ is a root of quadratic expression ${{x}^{2}}+ax+b$ then ${{\alpha }^{n}}+a{{\alpha }^{n-1}}+b{{\alpha }^{n-2}}=0\forall n\ge 3$. Write a similar expression for $\beta $ and add the two equations to get the above recursive relation.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life