If $\alpha +\beta =-2$ and ${{\alpha }^{3}}+{{\beta }^{3}}=-56$, then the quadratic expression whose roots are $\alpha $ and $\beta $ is :
[a] ${{x}^{2}}+2x-16$
[b] ${{x}^{2}}+2x+15$
[c] ${{x}^{2}}+2x-12$
[d] ${{x}^{2}}+2x-8$
Last updated date: 19th Mar 2023
•
Total views: 303.3k
•
Views today: 6.86k
Answer
303.3k+ views
Hint: Use the formula ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$ and ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ to find the value of $\alpha \beta $ and the use the property that the quadratic expression with roots a and b is ${{x}^{2}}-\left( a+b \right)x+ab$.
Complete step-by-step answer:
We have ${{\alpha }^{3}}+{{\beta }^{3}}=-56$ and $\alpha +\beta =-2$
Using ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$, we get
$\left( \alpha +\beta \right)\left( {{\alpha }^{2}}-\alpha \beta +{{\beta }^{2}} \right)=-56$
Substituting the value of $\left( \alpha +\beta \right)$, we get
$-2\left( {{\alpha }^{2}}-\alpha \beta +{{\beta }^{2}} \right)=-56$
Using ${{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab$ , we get
$-2\left( {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta -\alpha \beta \right)=-56$
Substituting the value of $\left( \alpha +\beta \right)$, we get
$\begin{align}
& -2\left( {{\left( -2 \right)}^{2}}-2\alpha \beta -\alpha \beta \right)=-56 \\
& \Rightarrow -2\left( 4-3\alpha \beta \right)=-56 \\
\end{align}$
Dividing both sides by -2, we get
$\begin{align}
& \dfrac{-2\left( 4-3\alpha \beta \right)}{-2}=\dfrac{-56}{-2} \\
& \Rightarrow 4-3\alpha \beta =28 \\
\end{align}$
Subtracting 4 on both sides, we get
$\begin{align}
& 4-3\alpha \beta -4=28-4 \\
& \Rightarrow -3\alpha \beta =24 \\
\end{align}$
Dividing both sides by -3, we get
$\begin{align}
& \dfrac{-3\alpha \beta }{-3}=\dfrac{24}{-3} \\
& \Rightarrow \alpha \beta =-8 \\
\end{align}$
Using the property “The quadratic expression with roots a and b is ${{x}^{2}}-\left( a+b \right)x+ab$.”
We have the quadratic expression with roots $\alpha $ and $\beta $ is
$\begin{align}
& {{x}^{2}}-\left( -2 \right)x+\left( -8 \right) \\
& ={{x}^{2}}+2x-8 \\
\end{align}$
Hence option [d] is correct.
Note: [1] We can solve the above question using newton method also.
Let ${{P}_{n}}={{\alpha }^{n}}+{{\beta }^{n}}$ where $\alpha $ and $\beta $ are the roots of the equation ${{x}^{2}}+ax+b$ then we have
${{P}_{1}}=-a$,${{P}_{2}}+a{{P}_{1}}+2b=0$ and ${{P}_{n}}+a{{P}_{n-1}}+b{{P}_{n-2}}=0\forall n\ge 3$
Using we get
${{P}_{1}}=-a$
But ${{P}_{1}}=\alpha +\beta =-2$ we have -a = -2
Hence a = 2.
${{P}_{2}}+a{{P}_{1}}+2b=0$
Substituting the value of ${{P}_{1}}$ and “a” we get
$\begin{align}
& {{P}_{2}}+\left( 2 \right)\left( -2 \right)+2b=0 \\
& \Rightarrow {{P}_{2}}-4+2b=0 \\
\end{align}$
Transposing -4+2b to RHS we get
${{P}_{2}}=4-2b$
Put n = 3 in the recurrence ${{P}_{n}}+a{{P}_{n-1}}+b{{P}_{n-2}}=0$, we get
${{P}_{3}}+\left( 2 \right){{P}_{2}}+b{{P}_{1}}=0$
But ${{P}_{3}}={{\alpha }^{3}}+{{\beta }^{3}}=-56$
Substituting the value of ${{P}_{1}},{{P}_{2}}$ and ${{P}_{3}}$ we get
$\begin{align}
& -56+\left( 2 \right)\left( 4-2b \right)+b\left( -2 \right)=0 \\
& \Rightarrow -56+8-4b-2b=0 \\
& \Rightarrow -48-6b=0 \\
\end{align}$
Adding 6b on both sides, we get
$\begin{align}
& -48-6b+6b=0+6b \\
& \Rightarrow 6b=-48 \\
\end{align}$
Dividing both sides by 6, we get
$\begin{align}
& \dfrac{6b}{6}=\dfrac{-48}{6}=-8 \\
& \Rightarrow b=-8 \\
\end{align}$
Hence b = -8 and a = 2
Hence the quadratic expression is ${{x}^{2}}+ax+b={{x}^{2}}+2x-8$
[2] The derivation of the Newton's method is a direct result of the observation that if $\alpha $ is a root of quadratic expression ${{x}^{2}}+ax+b$ then ${{\alpha }^{n}}+a{{\alpha }^{n-1}}+b{{\alpha }^{n-2}}=0\forall n\ge 3$. Write a similar expression for $\beta $ and add the two equations to get the above recursive relation.
Complete step-by-step answer:
We have ${{\alpha }^{3}}+{{\beta }^{3}}=-56$ and $\alpha +\beta =-2$
Using ${{a}^{3}}+{{b}^{3}}=\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)$, we get
$\left( \alpha +\beta \right)\left( {{\alpha }^{2}}-\alpha \beta +{{\beta }^{2}} \right)=-56$
Substituting the value of $\left( \alpha +\beta \right)$, we get
$-2\left( {{\alpha }^{2}}-\alpha \beta +{{\beta }^{2}} \right)=-56$
Using ${{a}^{2}}+{{b}^{2}}={{\left( a+b \right)}^{2}}-2ab$ , we get
$-2\left( {{\left( \alpha +\beta \right)}^{2}}-2\alpha \beta -\alpha \beta \right)=-56$
Substituting the value of $\left( \alpha +\beta \right)$, we get
$\begin{align}
& -2\left( {{\left( -2 \right)}^{2}}-2\alpha \beta -\alpha \beta \right)=-56 \\
& \Rightarrow -2\left( 4-3\alpha \beta \right)=-56 \\
\end{align}$
Dividing both sides by -2, we get
$\begin{align}
& \dfrac{-2\left( 4-3\alpha \beta \right)}{-2}=\dfrac{-56}{-2} \\
& \Rightarrow 4-3\alpha \beta =28 \\
\end{align}$
Subtracting 4 on both sides, we get
$\begin{align}
& 4-3\alpha \beta -4=28-4 \\
& \Rightarrow -3\alpha \beta =24 \\
\end{align}$
Dividing both sides by -3, we get
$\begin{align}
& \dfrac{-3\alpha \beta }{-3}=\dfrac{24}{-3} \\
& \Rightarrow \alpha \beta =-8 \\
\end{align}$
Using the property “The quadratic expression with roots a and b is ${{x}^{2}}-\left( a+b \right)x+ab$.”
We have the quadratic expression with roots $\alpha $ and $\beta $ is
$\begin{align}
& {{x}^{2}}-\left( -2 \right)x+\left( -8 \right) \\
& ={{x}^{2}}+2x-8 \\
\end{align}$
Hence option [d] is correct.
Note: [1] We can solve the above question using newton method also.
Let ${{P}_{n}}={{\alpha }^{n}}+{{\beta }^{n}}$ where $\alpha $ and $\beta $ are the roots of the equation ${{x}^{2}}+ax+b$ then we have
${{P}_{1}}=-a$,${{P}_{2}}+a{{P}_{1}}+2b=0$ and ${{P}_{n}}+a{{P}_{n-1}}+b{{P}_{n-2}}=0\forall n\ge 3$
Using we get
${{P}_{1}}=-a$
But ${{P}_{1}}=\alpha +\beta =-2$ we have -a = -2
Hence a = 2.
${{P}_{2}}+a{{P}_{1}}+2b=0$
Substituting the value of ${{P}_{1}}$ and “a” we get
$\begin{align}
& {{P}_{2}}+\left( 2 \right)\left( -2 \right)+2b=0 \\
& \Rightarrow {{P}_{2}}-4+2b=0 \\
\end{align}$
Transposing -4+2b to RHS we get
${{P}_{2}}=4-2b$
Put n = 3 in the recurrence ${{P}_{n}}+a{{P}_{n-1}}+b{{P}_{n-2}}=0$, we get
${{P}_{3}}+\left( 2 \right){{P}_{2}}+b{{P}_{1}}=0$
But ${{P}_{3}}={{\alpha }^{3}}+{{\beta }^{3}}=-56$
Substituting the value of ${{P}_{1}},{{P}_{2}}$ and ${{P}_{3}}$ we get
$\begin{align}
& -56+\left( 2 \right)\left( 4-2b \right)+b\left( -2 \right)=0 \\
& \Rightarrow -56+8-4b-2b=0 \\
& \Rightarrow -48-6b=0 \\
\end{align}$
Adding 6b on both sides, we get
$\begin{align}
& -48-6b+6b=0+6b \\
& \Rightarrow 6b=-48 \\
\end{align}$
Dividing both sides by 6, we get
$\begin{align}
& \dfrac{6b}{6}=\dfrac{-48}{6}=-8 \\
& \Rightarrow b=-8 \\
\end{align}$
Hence b = -8 and a = 2
Hence the quadratic expression is ${{x}^{2}}+ax+b={{x}^{2}}+2x-8$
[2] The derivation of the Newton's method is a direct result of the observation that if $\alpha $ is a root of quadratic expression ${{x}^{2}}+ax+b$ then ${{\alpha }^{n}}+a{{\alpha }^{n-1}}+b{{\alpha }^{n-2}}=0\forall n\ge 3$. Write a similar expression for $\beta $ and add the two equations to get the above recursive relation.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
