
If \[A=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right)\] then $ {{A}^{50}} $ equals
\[\begin{align}
& A.\left( \begin{matrix}
1 & 0 & 0 \\
25 & 1 & 0 \\
25 & 0 & 0 \\
\end{matrix} \right) \\
& B.{{A}^{2}}+24\left( {{A}^{2}}-I \right) \\
& C.\left( \begin{matrix}
1 & 25 & 25 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{matrix} \right) \\
& D.\text{ None of these} \\
\end{align}\]
Answer
593.4k+ views
Hint: The value of matrix $ {{A}^{50}} $ cannot be directly calculated just by simply multiplying A 50 times. Using hit and trial method find $ {{A}^{2}},{{A}^{3}}.... $ until you get some pattern. Once you get a pattern of all elements in the matrices, predict the matrix $ {{A}^{50}} $
Complete step-by-step answer:
Given matrix A is a $ 3\times 3 $ matrix having 3 rows and 3 columns.
\[A=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right)\left( 3\times 3 \right)\]
We need to compute $ {{A}^{50}} $ if it was given to calculate $ {{A}^{2}}\Rightarrow {{A}^{3}} $ we could have just multiplied $ A\times A $ and $ A\times A\times A $ respectively but here $ {{A}^{50}} $ is to be calculated, so, simply multiplication of $ A\times A $ up to 50 times is not possible.
We can use hit on trial method which is just a simple method.
\[A=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right)\]
Now, find $ A\times A\text{ i}\text{.e}\text{. }{{\text{A}}^{\text{2}}} $ multiplying given matrix with itself.
By multiplication property, two matrices can only be multiplied if columns of first matrix is equal to rows of second matrix. Here, \[A=3\times 3\text{ matrix}\] so when A will be multiplied with itself it would satisfy the multiplication condition.
Multiplying $ A\times A $
\[A\times A=\begin{matrix}
\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right) \\
{{1}^{st}} \\
\end{matrix}\times \begin{matrix}
\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right) \\
{{2}^{nd}} \\
\end{matrix}\]
Elements of row of first matrix will get multiplied with all the elements of all the column of second matrix and will get add up.
\[\begin{align}
& A\times A=\left( \begin{matrix}
1\times 1+0\times 1+0\times 0 & 1\times 0+0\times 0+0\times 1 & 1\times 0+0\times 1+0\times 0 \\
1\times 1+0\times 1+1\times 0 & 1\times 0+0\times 0+1\times 1 & 1\times 0+0\times 1+1\times 0 \\
0\times 1+1\times 1-0\times 0 & 0\times 0+1\times 0-0\times 1 & 0\times 0+1\times 1-0\times 0 \\
\end{matrix} \right) \\
& {{A}^{2}}=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{matrix} \right) \\
\end{align}\]
Similarly, $ {{A}^{3}} $ would be:
\[\begin{align}
& {{A}^{2}}\times A=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{matrix} \right)\times \left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right) \\
& {{A}^{2}}\times A=\left( \begin{matrix}
1\times 1+0\times 3+0\times 0 & 1\times 0+0\times 0+0\times 1 & 1\times 0+0\times 1+0\times 0 \\
1\times 1+1\times 1+0\times 0 & 1\times 0+1\times 0+0\times 1 & 1\times 0+1\times 1+0\times 0 \\
1\times 1+1\times 1+1\times 0 & 1\times 0+1\times 0+1\times 0 & 1\times 0+1\times 1+1\times 0 \\
\end{matrix} \right) \\
& {{A}^{3}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 0 & 1 \\
2 & 0 & 1 \\
\end{matrix} \right) \\
\end{align}\]
Again find $ {{A}^{4}}={{A}^{3}}\times A $
\[{{A}^{3}}\times A=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 0 & 1 \\
1 & 1 & 0 \\
\end{matrix} \right)\times \left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right)\]
After multiplying we get \[{{A}^{4}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & 0 & 1 \\
\end{matrix} \right)\]
We have:
\[{{A}^{1}}=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right);{{A}^{2}}=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{matrix} \right);{{A}^{3}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 0 & 1 \\
1 & 1 & 0 \\
\end{matrix} \right);{{A}^{4}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & 0 & 1 \\
\end{matrix} \right)\]
Can you observe the pattern in $ {{A}^{1}}\leftrightarrow {{A}^{3}} $ with odd powers and $ {{A}^{2}}\leftrightarrow {{A}^{4}} $ with even powers.
First row always remain = 1, 0, 0. Observe column first, second and third elements are getting increased by 1 in A with even powers $ {{A}^{2}}\leftrightarrow {{A}^{4}} $ So, by hit and trial we see $ {{A}^{50}} $ as:
$ {{A}^{50}} $ is with even power, will follow $ {{A}^{2}},{{A}^{4}} $ type
First row = 1, 0, 0
First column = Second and third elements
\[\begin{align}
& \therefore {{A}^{2}}\leftrightarrow {{A}^{4}}:\text{ From }\begin{matrix}
\text{1}\to \text{2} \\
\text{1}\to \text{2} \\
\end{matrix} \\
& \Rightarrow {{A}^{4}}\leftrightarrow {{A}^{6}}:\text{ From }\begin{matrix}
2\to 3 \\
2\to 3 \\
\end{matrix} \\
& \Rightarrow {{A}^{6}}\leftrightarrow {{A}^{8}}:\text{ From }\begin{matrix}
3\to 4 \\
3\to 4 \\
\end{matrix} \\
\end{align}\]
Thus, $ {{A}^{2}} $ contains second and third elements of first column as $ \dfrac{1}{1} $
\[{{A}^{4}}:\begin{matrix}
2 \\
2 \\
\end{matrix};{{A}^{6}}:\begin{matrix}
3 \\
3 \\
\end{matrix};{{A}^{8}}:\begin{matrix}
4 \\
4 \\
\end{matrix}\]
Following this trend second and third elements of first column of $ {{A}^{50}} $ would be:
\[{{A}^{50}}:\begin{matrix}
25 \\
25 \\
\end{matrix}\]
By hit and trial matrix $ {{A}^{50}} $ should be:
\[{{A}^{50}}=\left( \begin{matrix}
1 & 0 & 0 \\
25 & 1 & 0 \\
25 & 0 & 1 \\
\end{matrix} \right)\]
So, the correct answer is “Option A”.
Note: This problem can also be solved by the knowledge of Eigenvalues which are $ \pm 1 $ and thus, knowing the characteristic polynomial.
\[{{x}_{A}}\left( t \right)=\left( 1-t \right)\left( {{t}^{2}}-1 \right)\]
This method is a little complex.
Complete step-by-step answer:
Given matrix A is a $ 3\times 3 $ matrix having 3 rows and 3 columns.
\[A=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right)\left( 3\times 3 \right)\]
We need to compute $ {{A}^{50}} $ if it was given to calculate $ {{A}^{2}}\Rightarrow {{A}^{3}} $ we could have just multiplied $ A\times A $ and $ A\times A\times A $ respectively but here $ {{A}^{50}} $ is to be calculated, so, simply multiplication of $ A\times A $ up to 50 times is not possible.
We can use hit on trial method which is just a simple method.
\[A=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right)\]
Now, find $ A\times A\text{ i}\text{.e}\text{. }{{\text{A}}^{\text{2}}} $ multiplying given matrix with itself.
By multiplication property, two matrices can only be multiplied if columns of first matrix is equal to rows of second matrix. Here, \[A=3\times 3\text{ matrix}\] so when A will be multiplied with itself it would satisfy the multiplication condition.
Multiplying $ A\times A $
\[A\times A=\begin{matrix}
\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right) \\
{{1}^{st}} \\
\end{matrix}\times \begin{matrix}
\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right) \\
{{2}^{nd}} \\
\end{matrix}\]
Elements of row of first matrix will get multiplied with all the elements of all the column of second matrix and will get add up.
\[\begin{align}
& A\times A=\left( \begin{matrix}
1\times 1+0\times 1+0\times 0 & 1\times 0+0\times 0+0\times 1 & 1\times 0+0\times 1+0\times 0 \\
1\times 1+0\times 1+1\times 0 & 1\times 0+0\times 0+1\times 1 & 1\times 0+0\times 1+1\times 0 \\
0\times 1+1\times 1-0\times 0 & 0\times 0+1\times 0-0\times 1 & 0\times 0+1\times 1-0\times 0 \\
\end{matrix} \right) \\
& {{A}^{2}}=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{matrix} \right) \\
\end{align}\]
Similarly, $ {{A}^{3}} $ would be:
\[\begin{align}
& {{A}^{2}}\times A=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{matrix} \right)\times \left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right) \\
& {{A}^{2}}\times A=\left( \begin{matrix}
1\times 1+0\times 3+0\times 0 & 1\times 0+0\times 0+0\times 1 & 1\times 0+0\times 1+0\times 0 \\
1\times 1+1\times 1+0\times 0 & 1\times 0+1\times 0+0\times 1 & 1\times 0+1\times 1+0\times 0 \\
1\times 1+1\times 1+1\times 0 & 1\times 0+1\times 0+1\times 0 & 1\times 0+1\times 1+1\times 0 \\
\end{matrix} \right) \\
& {{A}^{3}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 0 & 1 \\
2 & 0 & 1 \\
\end{matrix} \right) \\
\end{align}\]
Again find $ {{A}^{4}}={{A}^{3}}\times A $
\[{{A}^{3}}\times A=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 0 & 1 \\
1 & 1 & 0 \\
\end{matrix} \right)\times \left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right)\]
After multiplying we get \[{{A}^{4}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & 0 & 1 \\
\end{matrix} \right)\]
We have:
\[{{A}^{1}}=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right);{{A}^{2}}=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{matrix} \right);{{A}^{3}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 0 & 1 \\
1 & 1 & 0 \\
\end{matrix} \right);{{A}^{4}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & 0 & 1 \\
\end{matrix} \right)\]
Can you observe the pattern in $ {{A}^{1}}\leftrightarrow {{A}^{3}} $ with odd powers and $ {{A}^{2}}\leftrightarrow {{A}^{4}} $ with even powers.
First row always remain = 1, 0, 0. Observe column first, second and third elements are getting increased by 1 in A with even powers $ {{A}^{2}}\leftrightarrow {{A}^{4}} $ So, by hit and trial we see $ {{A}^{50}} $ as:
$ {{A}^{50}} $ is with even power, will follow $ {{A}^{2}},{{A}^{4}} $ type
First row = 1, 0, 0
First column = Second and third elements
\[\begin{align}
& \therefore {{A}^{2}}\leftrightarrow {{A}^{4}}:\text{ From }\begin{matrix}
\text{1}\to \text{2} \\
\text{1}\to \text{2} \\
\end{matrix} \\
& \Rightarrow {{A}^{4}}\leftrightarrow {{A}^{6}}:\text{ From }\begin{matrix}
2\to 3 \\
2\to 3 \\
\end{matrix} \\
& \Rightarrow {{A}^{6}}\leftrightarrow {{A}^{8}}:\text{ From }\begin{matrix}
3\to 4 \\
3\to 4 \\
\end{matrix} \\
\end{align}\]
Thus, $ {{A}^{2}} $ contains second and third elements of first column as $ \dfrac{1}{1} $
\[{{A}^{4}}:\begin{matrix}
2 \\
2 \\
\end{matrix};{{A}^{6}}:\begin{matrix}
3 \\
3 \\
\end{matrix};{{A}^{8}}:\begin{matrix}
4 \\
4 \\
\end{matrix}\]
Following this trend second and third elements of first column of $ {{A}^{50}} $ would be:
\[{{A}^{50}}:\begin{matrix}
25 \\
25 \\
\end{matrix}\]
By hit and trial matrix $ {{A}^{50}} $ should be:
\[{{A}^{50}}=\left( \begin{matrix}
1 & 0 & 0 \\
25 & 1 & 0 \\
25 & 0 & 1 \\
\end{matrix} \right)\]
So, the correct answer is “Option A”.
Note: This problem can also be solved by the knowledge of Eigenvalues which are $ \pm 1 $ and thus, knowing the characteristic polynomial.
\[{{x}_{A}}\left( t \right)=\left( 1-t \right)\left( {{t}^{2}}-1 \right)\]
This method is a little complex.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

