Answer
Verified
466.8k+ views
Hint: The value of matrix $ {{A}^{50}} $ cannot be directly calculated just by simply multiplying A 50 times. Using hit and trial method find $ {{A}^{2}},{{A}^{3}}.... $ until you get some pattern. Once you get a pattern of all elements in the matrices, predict the matrix $ {{A}^{50}} $
Complete step-by-step answer:
Given matrix A is a $ 3\times 3 $ matrix having 3 rows and 3 columns.
\[A=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right)\left( 3\times 3 \right)\]
We need to compute $ {{A}^{50}} $ if it was given to calculate $ {{A}^{2}}\Rightarrow {{A}^{3}} $ we could have just multiplied $ A\times A $ and $ A\times A\times A $ respectively but here $ {{A}^{50}} $ is to be calculated, so, simply multiplication of $ A\times A $ up to 50 times is not possible.
We can use hit on trial method which is just a simple method.
\[A=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right)\]
Now, find $ A\times A\text{ i}\text{.e}\text{. }{{\text{A}}^{\text{2}}} $ multiplying given matrix with itself.
By multiplication property, two matrices can only be multiplied if columns of first matrix is equal to rows of second matrix. Here, \[A=3\times 3\text{ matrix}\] so when A will be multiplied with itself it would satisfy the multiplication condition.
Multiplying $ A\times A $
\[A\times A=\begin{matrix}
\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right) \\
{{1}^{st}} \\
\end{matrix}\times \begin{matrix}
\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right) \\
{{2}^{nd}} \\
\end{matrix}\]
Elements of row of first matrix will get multiplied with all the elements of all the column of second matrix and will get add up.
\[\begin{align}
& A\times A=\left( \begin{matrix}
1\times 1+0\times 1+0\times 0 & 1\times 0+0\times 0+0\times 1 & 1\times 0+0\times 1+0\times 0 \\
1\times 1+0\times 1+1\times 0 & 1\times 0+0\times 0+1\times 1 & 1\times 0+0\times 1+1\times 0 \\
0\times 1+1\times 1-0\times 0 & 0\times 0+1\times 0-0\times 1 & 0\times 0+1\times 1-0\times 0 \\
\end{matrix} \right) \\
& {{A}^{2}}=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{matrix} \right) \\
\end{align}\]
Similarly, $ {{A}^{3}} $ would be:
\[\begin{align}
& {{A}^{2}}\times A=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{matrix} \right)\times \left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right) \\
& {{A}^{2}}\times A=\left( \begin{matrix}
1\times 1+0\times 3+0\times 0 & 1\times 0+0\times 0+0\times 1 & 1\times 0+0\times 1+0\times 0 \\
1\times 1+1\times 1+0\times 0 & 1\times 0+1\times 0+0\times 1 & 1\times 0+1\times 1+0\times 0 \\
1\times 1+1\times 1+1\times 0 & 1\times 0+1\times 0+1\times 0 & 1\times 0+1\times 1+1\times 0 \\
\end{matrix} \right) \\
& {{A}^{3}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 0 & 1 \\
2 & 0 & 1 \\
\end{matrix} \right) \\
\end{align}\]
Again find $ {{A}^{4}}={{A}^{3}}\times A $
\[{{A}^{3}}\times A=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 0 & 1 \\
1 & 1 & 0 \\
\end{matrix} \right)\times \left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right)\]
After multiplying we get \[{{A}^{4}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & 0 & 1 \\
\end{matrix} \right)\]
We have:
\[{{A}^{1}}=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right);{{A}^{2}}=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{matrix} \right);{{A}^{3}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 0 & 1 \\
1 & 1 & 0 \\
\end{matrix} \right);{{A}^{4}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & 0 & 1 \\
\end{matrix} \right)\]
Can you observe the pattern in $ {{A}^{1}}\leftrightarrow {{A}^{3}} $ with odd powers and $ {{A}^{2}}\leftrightarrow {{A}^{4}} $ with even powers.
First row always remain = 1, 0, 0. Observe column first, second and third elements are getting increased by 1 in A with even powers $ {{A}^{2}}\leftrightarrow {{A}^{4}} $ So, by hit and trial we see $ {{A}^{50}} $ as:
$ {{A}^{50}} $ is with even power, will follow $ {{A}^{2}},{{A}^{4}} $ type
First row = 1, 0, 0
First column = Second and third elements
\[\begin{align}
& \therefore {{A}^{2}}\leftrightarrow {{A}^{4}}:\text{ From }\begin{matrix}
\text{1}\to \text{2} \\
\text{1}\to \text{2} \\
\end{matrix} \\
& \Rightarrow {{A}^{4}}\leftrightarrow {{A}^{6}}:\text{ From }\begin{matrix}
2\to 3 \\
2\to 3 \\
\end{matrix} \\
& \Rightarrow {{A}^{6}}\leftrightarrow {{A}^{8}}:\text{ From }\begin{matrix}
3\to 4 \\
3\to 4 \\
\end{matrix} \\
\end{align}\]
Thus, $ {{A}^{2}} $ contains second and third elements of first column as $ \dfrac{1}{1} $
\[{{A}^{4}}:\begin{matrix}
2 \\
2 \\
\end{matrix};{{A}^{6}}:\begin{matrix}
3 \\
3 \\
\end{matrix};{{A}^{8}}:\begin{matrix}
4 \\
4 \\
\end{matrix}\]
Following this trend second and third elements of first column of $ {{A}^{50}} $ would be:
\[{{A}^{50}}:\begin{matrix}
25 \\
25 \\
\end{matrix}\]
By hit and trial matrix $ {{A}^{50}} $ should be:
\[{{A}^{50}}=\left( \begin{matrix}
1 & 0 & 0 \\
25 & 1 & 0 \\
25 & 0 & 1 \\
\end{matrix} \right)\]
So, the correct answer is “Option A”.
Note: This problem can also be solved by the knowledge of Eigenvalues which are $ \pm 1 $ and thus, knowing the characteristic polynomial.
\[{{x}_{A}}\left( t \right)=\left( 1-t \right)\left( {{t}^{2}}-1 \right)\]
This method is a little complex.
Complete step-by-step answer:
Given matrix A is a $ 3\times 3 $ matrix having 3 rows and 3 columns.
\[A=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right)\left( 3\times 3 \right)\]
We need to compute $ {{A}^{50}} $ if it was given to calculate $ {{A}^{2}}\Rightarrow {{A}^{3}} $ we could have just multiplied $ A\times A $ and $ A\times A\times A $ respectively but here $ {{A}^{50}} $ is to be calculated, so, simply multiplication of $ A\times A $ up to 50 times is not possible.
We can use hit on trial method which is just a simple method.
\[A=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right)\]
Now, find $ A\times A\text{ i}\text{.e}\text{. }{{\text{A}}^{\text{2}}} $ multiplying given matrix with itself.
By multiplication property, two matrices can only be multiplied if columns of first matrix is equal to rows of second matrix. Here, \[A=3\times 3\text{ matrix}\] so when A will be multiplied with itself it would satisfy the multiplication condition.
Multiplying $ A\times A $
\[A\times A=\begin{matrix}
\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right) \\
{{1}^{st}} \\
\end{matrix}\times \begin{matrix}
\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right) \\
{{2}^{nd}} \\
\end{matrix}\]
Elements of row of first matrix will get multiplied with all the elements of all the column of second matrix and will get add up.
\[\begin{align}
& A\times A=\left( \begin{matrix}
1\times 1+0\times 1+0\times 0 & 1\times 0+0\times 0+0\times 1 & 1\times 0+0\times 1+0\times 0 \\
1\times 1+0\times 1+1\times 0 & 1\times 0+0\times 0+1\times 1 & 1\times 0+0\times 1+1\times 0 \\
0\times 1+1\times 1-0\times 0 & 0\times 0+1\times 0-0\times 1 & 0\times 0+1\times 1-0\times 0 \\
\end{matrix} \right) \\
& {{A}^{2}}=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{matrix} \right) \\
\end{align}\]
Similarly, $ {{A}^{3}} $ would be:
\[\begin{align}
& {{A}^{2}}\times A=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{matrix} \right)\times \left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right) \\
& {{A}^{2}}\times A=\left( \begin{matrix}
1\times 1+0\times 3+0\times 0 & 1\times 0+0\times 0+0\times 1 & 1\times 0+0\times 1+0\times 0 \\
1\times 1+1\times 1+0\times 0 & 1\times 0+1\times 0+0\times 1 & 1\times 0+1\times 1+0\times 0 \\
1\times 1+1\times 1+1\times 0 & 1\times 0+1\times 0+1\times 0 & 1\times 0+1\times 1+1\times 0 \\
\end{matrix} \right) \\
& {{A}^{3}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 0 & 1 \\
2 & 0 & 1 \\
\end{matrix} \right) \\
\end{align}\]
Again find $ {{A}^{4}}={{A}^{3}}\times A $
\[{{A}^{3}}\times A=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 0 & 1 \\
1 & 1 & 0 \\
\end{matrix} \right)\times \left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right)\]
After multiplying we get \[{{A}^{4}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & 0 & 1 \\
\end{matrix} \right)\]
We have:
\[{{A}^{1}}=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
\end{matrix} \right);{{A}^{2}}=\left( \begin{matrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
\end{matrix} \right);{{A}^{3}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 0 & 1 \\
1 & 1 & 0 \\
\end{matrix} \right);{{A}^{4}}=\left( \begin{matrix}
1 & 0 & 0 \\
2 & 1 & 0 \\
2 & 0 & 1 \\
\end{matrix} \right)\]
Can you observe the pattern in $ {{A}^{1}}\leftrightarrow {{A}^{3}} $ with odd powers and $ {{A}^{2}}\leftrightarrow {{A}^{4}} $ with even powers.
First row always remain = 1, 0, 0. Observe column first, second and third elements are getting increased by 1 in A with even powers $ {{A}^{2}}\leftrightarrow {{A}^{4}} $ So, by hit and trial we see $ {{A}^{50}} $ as:
$ {{A}^{50}} $ is with even power, will follow $ {{A}^{2}},{{A}^{4}} $ type
First row = 1, 0, 0
First column = Second and third elements
\[\begin{align}
& \therefore {{A}^{2}}\leftrightarrow {{A}^{4}}:\text{ From }\begin{matrix}
\text{1}\to \text{2} \\
\text{1}\to \text{2} \\
\end{matrix} \\
& \Rightarrow {{A}^{4}}\leftrightarrow {{A}^{6}}:\text{ From }\begin{matrix}
2\to 3 \\
2\to 3 \\
\end{matrix} \\
& \Rightarrow {{A}^{6}}\leftrightarrow {{A}^{8}}:\text{ From }\begin{matrix}
3\to 4 \\
3\to 4 \\
\end{matrix} \\
\end{align}\]
Thus, $ {{A}^{2}} $ contains second and third elements of first column as $ \dfrac{1}{1} $
\[{{A}^{4}}:\begin{matrix}
2 \\
2 \\
\end{matrix};{{A}^{6}}:\begin{matrix}
3 \\
3 \\
\end{matrix};{{A}^{8}}:\begin{matrix}
4 \\
4 \\
\end{matrix}\]
Following this trend second and third elements of first column of $ {{A}^{50}} $ would be:
\[{{A}^{50}}:\begin{matrix}
25 \\
25 \\
\end{matrix}\]
By hit and trial matrix $ {{A}^{50}} $ should be:
\[{{A}^{50}}=\left( \begin{matrix}
1 & 0 & 0 \\
25 & 1 & 0 \\
25 & 0 & 1 \\
\end{matrix} \right)\]
So, the correct answer is “Option A”.
Note: This problem can also be solved by the knowledge of Eigenvalues which are $ \pm 1 $ and thus, knowing the characteristic polynomial.
\[{{x}_{A}}\left( t \right)=\left( 1-t \right)\left( {{t}^{2}}-1 \right)\]
This method is a little complex.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE