
If AD and PM are medians of triangles ABC and PQR , respectively where $\vartriangle ABC \sim \vartriangle PQR$ , prove that $\dfrac{{AB}}{{PQ}} = \dfrac{{AD}}{{PM}}$
Answer
605.7k+ views
Hint: Let’s make use of the property of congruence of triangles & analyse the sides of triangles by medians to approach the solution.
Complete step-by-step answer:
Given that $\vartriangle ABC \sim \vartriangle PQR$
So, from the property of congruence triangles, we can write
$\dfrac{{AB}}{{PQ}} = \dfrac{{BC}}{{QR}} = \dfrac{{AC}}{{PR}}$ (Corresponding sides of congruent triangles)
Also, $\angle A = \angle P,\angle B = \angle Q,\angle C = \angle R$ (Corresponding angles of congruent triangles)
Given that AD and PM are medians of the triangle ABC and PQR respectively
If a median is drawn from a vertex to a side, then it divides the side equally
So, from this we can write BD=CD$ \Rightarrow BC = 2BD$
QM=MR$ \Rightarrow $QR=2QM
Hence, from this we can write
$\dfrac{{AB}}{{PQ}} = \dfrac{{2BD}}{{2QM}} = \dfrac{{AC}}{{PR}}$
$ \Rightarrow \dfrac{{AB}}{{PQ}} = \dfrac{{BD}}{{QM}} = \dfrac{{AC}}{{PR}}$
So, now we can write in $\vartriangle ABD$ and $\vartriangle PQM$
$\dfrac{{AB}}{{PQ}} = \dfrac{{BD}}{{QM}}$
and $\angle B = \angle Q$
And so , from SAS similarity, we can write
$\vartriangle ABD \sim \vartriangle PQM$
$\therefore \dfrac{{AB}}{{PQ}} = \dfrac{{AD}}{{PM}}$ (Congruent sides of congruent triangles)
So, this is what we had to prove, hence the result is proved.
Note: When solving these types of problems first prove the congruence of the triangles and from this find out the ratio of the corresponding sides in accordance to the RHS which has to be proved.
Complete step-by-step answer:
Given that $\vartriangle ABC \sim \vartriangle PQR$
So, from the property of congruence triangles, we can write
$\dfrac{{AB}}{{PQ}} = \dfrac{{BC}}{{QR}} = \dfrac{{AC}}{{PR}}$ (Corresponding sides of congruent triangles)
Also, $\angle A = \angle P,\angle B = \angle Q,\angle C = \angle R$ (Corresponding angles of congruent triangles)
Given that AD and PM are medians of the triangle ABC and PQR respectively
If a median is drawn from a vertex to a side, then it divides the side equally
So, from this we can write BD=CD$ \Rightarrow BC = 2BD$
QM=MR$ \Rightarrow $QR=2QM
Hence, from this we can write
$\dfrac{{AB}}{{PQ}} = \dfrac{{2BD}}{{2QM}} = \dfrac{{AC}}{{PR}}$
$ \Rightarrow \dfrac{{AB}}{{PQ}} = \dfrac{{BD}}{{QM}} = \dfrac{{AC}}{{PR}}$
So, now we can write in $\vartriangle ABD$ and $\vartriangle PQM$
$\dfrac{{AB}}{{PQ}} = \dfrac{{BD}}{{QM}}$
and $\angle B = \angle Q$
And so , from SAS similarity, we can write
$\vartriangle ABD \sim \vartriangle PQM$
$\therefore \dfrac{{AB}}{{PQ}} = \dfrac{{AD}}{{PM}}$ (Congruent sides of congruent triangles)
So, this is what we had to prove, hence the result is proved.
Note: When solving these types of problems first prove the congruence of the triangles and from this find out the ratio of the corresponding sides in accordance to the RHS which has to be proved.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

