
If \[a,b,c,d\] are four positive real numbers such that \[abcd=1\], then the minimum value of \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\] is equal to
Answer
512.4k+ views
Hint: Expand the brackets and rearrange the terms using the condition that \[abcd=1\]. Use the Arithmetic Mean-Geometric Mean Property (AM-GM Property) which states that for any two positive real numbers \[x\] and \[y\], we have the condition that \[x+y\ge 2\sqrt{xy}\], to find the minimum value of the given expression.
Complete step-by-step answer:
We have four positive real numbers \[a,b,c,d\] such that \[abcd=1\]. We have to find the minimum value of the expression \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\].
We will begin by expanding the given expressions by multiplying the terms.
Thus, we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=\left( 1+a+b+ab \right)\left( 1+c \right)\left( 1+d \right)\].
Further simplifying the expression, we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=\left( 1+a+b+ab+c+ac+bc+abc \right)\left( 1+d \right)\].
Thus, we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=1+a+b+ab+c+ac+bc+abc+d+ad+bd+abd+cd+acd+bcd+abcd\]
We can rearrange to write it as \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=1+a+b+c+d+ab+ac+ad+bc+bd+cd+abc+abd+bcd+acd+abcd..\left( 1 \right)\]
We know that \[abcd=1\].
Thus, we can rearrange the terms to get \[abc=\dfrac{1}{d},abd=\dfrac{1}{c},bcd=\dfrac{1}{a},acd=\dfrac{1}{b}.....\left( 2 \right)\].
We can also rearrange the terms of equation \[abcd=1\] to get \[ab=\dfrac{1}{cd},ac=\dfrac{1}{bd},ad=\dfrac{1}{bc}.....\left( 3 \right)\].
Substituting the value \[abcd=1\] and equation \[\left( 2 \right),\left( 3 \right)\] in equation \[\left( 1 \right)\], we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=1+1+\left( a+\dfrac{1}{a} \right)+\left( b+\dfrac{1}{b} \right)+\left( c+\dfrac{1}{c} \right)+\left( d+\dfrac{1}{d} \right)+\left( cd+\dfrac{1}{cd} \right)+\left( bd+\dfrac{1}{bd} \right)+\left( bc+\dfrac{1}{bc} \right).....\left( 4 \right)\]
We will now use Arithmetic Mean-Geometric Mean Property (AM-GM Property) which says that for any two positive real numbers \[x\] and \[y\], we have the condition that \[x+y\ge 2\sqrt{xy}\].
Substituting \[x=a,y=\dfrac{1}{a}\] in the above equation, we have \[a+\dfrac{1}{a}\ge 2\sqrt{a\left( \dfrac{1}{a} \right)}=2\sqrt{1}=2\Rightarrow a+\dfrac{1}{a}\ge 2\].
Thus, for any two positive real numbers, we have \[a+\dfrac{1}{a}\ge 2\].
Hence, we have \[a+\dfrac{1}{a}\ge 2,b+\dfrac{1}{b}\ge 2,c+\dfrac{1}{c}\ge 2,d+\dfrac{1}{d}\ge 2,cd+\dfrac{1}{cd}\ge 2,bd+\dfrac{1}{bd}\ge 2,bc+\dfrac{1}{bc}\ge 2.....\left( 5 \right)\].
We also know that if \[x\ge a\] and \[y\ge b\] then \[x+y\ge a+b\].
Using the inequality of equation \[\left( 5 \right)\] in equation \[\left( 4 \right)\], we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\ge 2+2+2+2+2+2+2+2=16\].
Thus, we have the inequality \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\ge 16\].
Hence, the minimum value of expression \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\] is \[16\] which holds when all the four terms are equal, i.e., \[a=b=c=d=1\].
Note: We can also solve this question by observing that the expression \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\] will attain minimum value only when \[a=b=c=d\] and thus, we need to find the roots of the equation \[{{x}^{4}}=1\]. The only positive real roots of the equation is \[x=1\] and thus, get the minimum value.
Complete step-by-step answer:
We have four positive real numbers \[a,b,c,d\] such that \[abcd=1\]. We have to find the minimum value of the expression \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\].
We will begin by expanding the given expressions by multiplying the terms.
Thus, we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=\left( 1+a+b+ab \right)\left( 1+c \right)\left( 1+d \right)\].
Further simplifying the expression, we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=\left( 1+a+b+ab+c+ac+bc+abc \right)\left( 1+d \right)\].
Thus, we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=1+a+b+ab+c+ac+bc+abc+d+ad+bd+abd+cd+acd+bcd+abcd\]
We can rearrange to write it as \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=1+a+b+c+d+ab+ac+ad+bc+bd+cd+abc+abd+bcd+acd+abcd..\left( 1 \right)\]
We know that \[abcd=1\].
Thus, we can rearrange the terms to get \[abc=\dfrac{1}{d},abd=\dfrac{1}{c},bcd=\dfrac{1}{a},acd=\dfrac{1}{b}.....\left( 2 \right)\].
We can also rearrange the terms of equation \[abcd=1\] to get \[ab=\dfrac{1}{cd},ac=\dfrac{1}{bd},ad=\dfrac{1}{bc}.....\left( 3 \right)\].
Substituting the value \[abcd=1\] and equation \[\left( 2 \right),\left( 3 \right)\] in equation \[\left( 1 \right)\], we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)=1+1+\left( a+\dfrac{1}{a} \right)+\left( b+\dfrac{1}{b} \right)+\left( c+\dfrac{1}{c} \right)+\left( d+\dfrac{1}{d} \right)+\left( cd+\dfrac{1}{cd} \right)+\left( bd+\dfrac{1}{bd} \right)+\left( bc+\dfrac{1}{bc} \right).....\left( 4 \right)\]
We will now use Arithmetic Mean-Geometric Mean Property (AM-GM Property) which says that for any two positive real numbers \[x\] and \[y\], we have the condition that \[x+y\ge 2\sqrt{xy}\].
Substituting \[x=a,y=\dfrac{1}{a}\] in the above equation, we have \[a+\dfrac{1}{a}\ge 2\sqrt{a\left( \dfrac{1}{a} \right)}=2\sqrt{1}=2\Rightarrow a+\dfrac{1}{a}\ge 2\].
Thus, for any two positive real numbers, we have \[a+\dfrac{1}{a}\ge 2\].
Hence, we have \[a+\dfrac{1}{a}\ge 2,b+\dfrac{1}{b}\ge 2,c+\dfrac{1}{c}\ge 2,d+\dfrac{1}{d}\ge 2,cd+\dfrac{1}{cd}\ge 2,bd+\dfrac{1}{bd}\ge 2,bc+\dfrac{1}{bc}\ge 2.....\left( 5 \right)\].
We also know that if \[x\ge a\] and \[y\ge b\] then \[x+y\ge a+b\].
Using the inequality of equation \[\left( 5 \right)\] in equation \[\left( 4 \right)\], we have \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\ge 2+2+2+2+2+2+2+2=16\].
Thus, we have the inequality \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\ge 16\].
Hence, the minimum value of expression \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\] is \[16\] which holds when all the four terms are equal, i.e., \[a=b=c=d=1\].
Note: We can also solve this question by observing that the expression \[\left( 1+a \right)\left( 1+b \right)\left( 1+c \right)\left( 1+d \right)\] will attain minimum value only when \[a=b=c=d\] and thus, we need to find the roots of the equation \[{{x}^{4}}=1\]. The only positive real roots of the equation is \[x=1\] and thus, get the minimum value.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE

The area of a 6m wide road outside a garden in all class 10 maths CBSE

What is the electric flux through a cube of side 1 class 10 physics CBSE

If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE

The radius and height of a cylinder are in the ratio class 10 maths CBSE

An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE

Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What constitutes the central nervous system How are class 10 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Explain the Treaty of Vienna of 1815 class 10 social science CBSE
