
If $abc = 1$, show that $\dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}} = 1$
Answer
505.5k+ views
Hint: To prove that $\dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}} = 1$, we have $abc = 1$. So, using this we need to take $c = \dfrac{1}{{ab}}$ and substitute in the LHS of the given equation. After substituting, take LCM and simplify the equation further and we will get our answer.
Complete step by step solution:
In this question, we are given an equation and we need to prove that it is correct.
The given equation is: $\dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}} = 1$ - - - - - - - - - - - (1)
So, we need to prove that LHS of equation (1) is equal to RHS of the equation (1).
For that, we will take the LHS and simplify it to prove that LHS is equal to RHS.
Also, we are given that $abc = 1$.
Now, let us take the LHS of equation (1). Therefore,
$ \Rightarrow LHS = \dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}}$
Now, inverse means reciprocal. Therefore,
$ \Rightarrow LHS = \dfrac{1}{{1 + a + \dfrac{1}{b}}} + \dfrac{1}{{1 + b + \dfrac{1}{c}}} + \dfrac{1}{{1 + c + \dfrac{1}{a}}}$ - - - - - - - - - - (2)
Now,
$
\Rightarrow abc = 1 \\
\Rightarrow c = \dfrac{1}{{ab}} \\
$
So, substitute this value in equation (2), we get
$
\Rightarrow LHS = \dfrac{1}{{1 + a + \dfrac{1}{b}}} + \dfrac{1}{{1 + b + \dfrac{1}{{\dfrac{1}{{ab}}}}}} + \dfrac{1}{{1 + \dfrac{1}{{ab}} + \dfrac{1}{a}}} \\
\Rightarrow LHS = \dfrac{1}{{1 + a + \dfrac{1}{b}}} + \dfrac{1}{{1 + b + ab}} + \dfrac{1}{{1 + \dfrac{1}{{ab}} + \dfrac{1}{a}}} \\
$
Now, taking LCM in denominator, we get
$
\Rightarrow LHS = \dfrac{1}{{\dfrac{{b + ab + 1}}{b}}} + \dfrac{1}{{1 + b + ab}} + \dfrac{1}{{\dfrac{{ab + 1 + b}}{{ab}}}} \\
\Rightarrow LHS = \dfrac{b}{{b + ab + 1}} + \dfrac{1}{{b + ab + 1}} + \dfrac{{ab}}{{b + ab + 1}} \\
$
Now, all the denominators are the same, so we can add the numerators. Therefore, we get
\[
\Rightarrow LHS = \dfrac{b}{{b + ab + 1}} + \dfrac{1}{{b + ab + 1}} + \dfrac{{ab}}{{b + ab + 1}} \\
\Rightarrow LHS = \dfrac{{b + ab + 1}}{{b + ab + 1}} \\
\Rightarrow LHS = 1 \\
\Rightarrow LHS = RHS \\
\]
Hence, we have proved that $\dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}} = 1$.
Note:
Here, we can also prove that LHS is equal to RHS by substituting the value of b equal to 1 divided by $ac$.
$
\Rightarrow abc = 1 \\
\Rightarrow b = \dfrac{1}{{ac}} \\
$
By substituting this value and simplifying further, we will still get LHS equal to RHS.
Complete step by step solution:
In this question, we are given an equation and we need to prove that it is correct.
The given equation is: $\dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}} = 1$ - - - - - - - - - - - (1)
So, we need to prove that LHS of equation (1) is equal to RHS of the equation (1).
For that, we will take the LHS and simplify it to prove that LHS is equal to RHS.
Also, we are given that $abc = 1$.
Now, let us take the LHS of equation (1). Therefore,
$ \Rightarrow LHS = \dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}}$
Now, inverse means reciprocal. Therefore,
$ \Rightarrow LHS = \dfrac{1}{{1 + a + \dfrac{1}{b}}} + \dfrac{1}{{1 + b + \dfrac{1}{c}}} + \dfrac{1}{{1 + c + \dfrac{1}{a}}}$ - - - - - - - - - - (2)
Now,
$
\Rightarrow abc = 1 \\
\Rightarrow c = \dfrac{1}{{ab}} \\
$
So, substitute this value in equation (2), we get
$
\Rightarrow LHS = \dfrac{1}{{1 + a + \dfrac{1}{b}}} + \dfrac{1}{{1 + b + \dfrac{1}{{\dfrac{1}{{ab}}}}}} + \dfrac{1}{{1 + \dfrac{1}{{ab}} + \dfrac{1}{a}}} \\
\Rightarrow LHS = \dfrac{1}{{1 + a + \dfrac{1}{b}}} + \dfrac{1}{{1 + b + ab}} + \dfrac{1}{{1 + \dfrac{1}{{ab}} + \dfrac{1}{a}}} \\
$
Now, taking LCM in denominator, we get
$
\Rightarrow LHS = \dfrac{1}{{\dfrac{{b + ab + 1}}{b}}} + \dfrac{1}{{1 + b + ab}} + \dfrac{1}{{\dfrac{{ab + 1 + b}}{{ab}}}} \\
\Rightarrow LHS = \dfrac{b}{{b + ab + 1}} + \dfrac{1}{{b + ab + 1}} + \dfrac{{ab}}{{b + ab + 1}} \\
$
Now, all the denominators are the same, so we can add the numerators. Therefore, we get
\[
\Rightarrow LHS = \dfrac{b}{{b + ab + 1}} + \dfrac{1}{{b + ab + 1}} + \dfrac{{ab}}{{b + ab + 1}} \\
\Rightarrow LHS = \dfrac{{b + ab + 1}}{{b + ab + 1}} \\
\Rightarrow LHS = 1 \\
\Rightarrow LHS = RHS \\
\]
Hence, we have proved that $\dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}} = 1$.
Note:
Here, we can also prove that LHS is equal to RHS by substituting the value of b equal to 1 divided by $ac$.
$
\Rightarrow abc = 1 \\
\Rightarrow b = \dfrac{1}{{ac}} \\
$
By substituting this value and simplifying further, we will still get LHS equal to RHS.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

10 examples of evaporation in daily life with explanations

