Answer
Verified
365.7k+ views
Hint: To prove that $\dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}} = 1$, we have $abc = 1$. So, using this we need to take $c = \dfrac{1}{{ab}}$ and substitute in the LHS of the given equation. After substituting, take LCM and simplify the equation further and we will get our answer.
Complete step by step solution:
In this question, we are given an equation and we need to prove that it is correct.
The given equation is: $\dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}} = 1$ - - - - - - - - - - - (1)
So, we need to prove that LHS of equation (1) is equal to RHS of the equation (1).
For that, we will take the LHS and simplify it to prove that LHS is equal to RHS.
Also, we are given that $abc = 1$.
Now, let us take the LHS of equation (1). Therefore,
$ \Rightarrow LHS = \dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}}$
Now, inverse means reciprocal. Therefore,
$ \Rightarrow LHS = \dfrac{1}{{1 + a + \dfrac{1}{b}}} + \dfrac{1}{{1 + b + \dfrac{1}{c}}} + \dfrac{1}{{1 + c + \dfrac{1}{a}}}$ - - - - - - - - - - (2)
Now,
$
\Rightarrow abc = 1 \\
\Rightarrow c = \dfrac{1}{{ab}} \\
$
So, substitute this value in equation (2), we get
$
\Rightarrow LHS = \dfrac{1}{{1 + a + \dfrac{1}{b}}} + \dfrac{1}{{1 + b + \dfrac{1}{{\dfrac{1}{{ab}}}}}} + \dfrac{1}{{1 + \dfrac{1}{{ab}} + \dfrac{1}{a}}} \\
\Rightarrow LHS = \dfrac{1}{{1 + a + \dfrac{1}{b}}} + \dfrac{1}{{1 + b + ab}} + \dfrac{1}{{1 + \dfrac{1}{{ab}} + \dfrac{1}{a}}} \\
$
Now, taking LCM in denominator, we get
$
\Rightarrow LHS = \dfrac{1}{{\dfrac{{b + ab + 1}}{b}}} + \dfrac{1}{{1 + b + ab}} + \dfrac{1}{{\dfrac{{ab + 1 + b}}{{ab}}}} \\
\Rightarrow LHS = \dfrac{b}{{b + ab + 1}} + \dfrac{1}{{b + ab + 1}} + \dfrac{{ab}}{{b + ab + 1}} \\
$
Now, all the denominators are the same, so we can add the numerators. Therefore, we get
\[
\Rightarrow LHS = \dfrac{b}{{b + ab + 1}} + \dfrac{1}{{b + ab + 1}} + \dfrac{{ab}}{{b + ab + 1}} \\
\Rightarrow LHS = \dfrac{{b + ab + 1}}{{b + ab + 1}} \\
\Rightarrow LHS = 1 \\
\Rightarrow LHS = RHS \\
\]
Hence, we have proved that $\dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}} = 1$.
Note:
Here, we can also prove that LHS is equal to RHS by substituting the value of b equal to 1 divided by $ac$.
$
\Rightarrow abc = 1 \\
\Rightarrow b = \dfrac{1}{{ac}} \\
$
By substituting this value and simplifying further, we will still get LHS equal to RHS.
Complete step by step solution:
In this question, we are given an equation and we need to prove that it is correct.
The given equation is: $\dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}} = 1$ - - - - - - - - - - - (1)
So, we need to prove that LHS of equation (1) is equal to RHS of the equation (1).
For that, we will take the LHS and simplify it to prove that LHS is equal to RHS.
Also, we are given that $abc = 1$.
Now, let us take the LHS of equation (1). Therefore,
$ \Rightarrow LHS = \dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}}$
Now, inverse means reciprocal. Therefore,
$ \Rightarrow LHS = \dfrac{1}{{1 + a + \dfrac{1}{b}}} + \dfrac{1}{{1 + b + \dfrac{1}{c}}} + \dfrac{1}{{1 + c + \dfrac{1}{a}}}$ - - - - - - - - - - (2)
Now,
$
\Rightarrow abc = 1 \\
\Rightarrow c = \dfrac{1}{{ab}} \\
$
So, substitute this value in equation (2), we get
$
\Rightarrow LHS = \dfrac{1}{{1 + a + \dfrac{1}{b}}} + \dfrac{1}{{1 + b + \dfrac{1}{{\dfrac{1}{{ab}}}}}} + \dfrac{1}{{1 + \dfrac{1}{{ab}} + \dfrac{1}{a}}} \\
\Rightarrow LHS = \dfrac{1}{{1 + a + \dfrac{1}{b}}} + \dfrac{1}{{1 + b + ab}} + \dfrac{1}{{1 + \dfrac{1}{{ab}} + \dfrac{1}{a}}} \\
$
Now, taking LCM in denominator, we get
$
\Rightarrow LHS = \dfrac{1}{{\dfrac{{b + ab + 1}}{b}}} + \dfrac{1}{{1 + b + ab}} + \dfrac{1}{{\dfrac{{ab + 1 + b}}{{ab}}}} \\
\Rightarrow LHS = \dfrac{b}{{b + ab + 1}} + \dfrac{1}{{b + ab + 1}} + \dfrac{{ab}}{{b + ab + 1}} \\
$
Now, all the denominators are the same, so we can add the numerators. Therefore, we get
\[
\Rightarrow LHS = \dfrac{b}{{b + ab + 1}} + \dfrac{1}{{b + ab + 1}} + \dfrac{{ab}}{{b + ab + 1}} \\
\Rightarrow LHS = \dfrac{{b + ab + 1}}{{b + ab + 1}} \\
\Rightarrow LHS = 1 \\
\Rightarrow LHS = RHS \\
\]
Hence, we have proved that $\dfrac{1}{{1 + a + {b^{ - 1}}}} + \dfrac{1}{{1 + b + {c^{ - 1}}}} + \dfrac{1}{{1 + c + {a^{ - 1}}}} = 1$.
Note:
Here, we can also prove that LHS is equal to RHS by substituting the value of b equal to 1 divided by $ac$.
$
\Rightarrow abc = 1 \\
\Rightarrow b = \dfrac{1}{{ac}} \\
$
By substituting this value and simplifying further, we will still get LHS equal to RHS.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Bimbisara was the founder of dynasty A Nanda B Haryanka class 6 social science CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
10 examples of evaporation in daily life with explanations
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell