If $a,b$ and $n$ are natural numbers then ${{a}^{2n-1}}+{{b}^{2n-1}}$ is divisible by
A. $a+b$
B. $a-b$
C. ${{a}^{3}}+{{b}^{3}}$
D. ${{a}^{2}}+{{b}^{2}}$
Answer
278.4k+ views
Hint: To get the divisor of the given function that is ${{a}^{2n-1}}+{{b}^{2n-1}}$, we will find the value of the function for different values of $n$ for some numbers. Then, we will look for common factors among all of them. This common factor will be the divisor of the given function.
Complete step by step answer:
Since, $n$ is the natural numbers. We will substitute the value of $n$ in the given function with numbers. The given function is:
$\Rightarrow {{a}^{2n-1}}+{{b}^{2n-1}}$
For $n=1$, the function will be:
$\Rightarrow {{a}^{2\times 1-1}}+{{b}^{2\times 1-1}}$
Now, we will simplify it by using multiplication and then subtraction as
$\begin{align}
& \Rightarrow {{a}^{2-1}}+{{b}^{2-1}} \\
& \Rightarrow {{a}^{1}}+{{b}^{1}} \\
\end{align}$
The above step can be written as:
$\Rightarrow a+b$
For $n=2$, we will get from the function:
$\Rightarrow {{a}^{2\times 2-1}}+{{b}^{2\times 2-1}}$
Now, we will be using multiplication in the above step and will get $4$ for multiplication $2$ with \[2\] as:
$\Rightarrow {{a}^{4-1}}+{{b}^{4-1}}$
And then we will subtract $1$ from $4$ and will get $3$:
$\Rightarrow {{a}^{3}}+{{b}^{3}}$
Here, we can expand it as:
\[\Rightarrow \left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\]
Now, we will check it for $n=3$:
$\Rightarrow {{a}^{2\times 3-1}}+{{b}^{2\times 3-1}}$
After multiplication, the above step will be:
$\Rightarrow {{a}^{6-1}}+{{b}^{6-1}}$
And after subtracting $1$ from $6$, the above function will be:
$\Rightarrow {{a}^{5}}+{{b}^{5}}$
Further we will expand the above step as:
$\Rightarrow \left( a+b \right)\left( {{a}^{4}}-{{a}^{3}}b+{{a}^{2}}{{b}^{2}}-a{{b}^{3}}+{{b}^{4}} \right)$
And for substituting $n=$4, the function will be as:
$\Rightarrow {{a}^{2\times 4-1}}+{{b}^{2\times 4-1}}$
Multiplication of $2$ and $4$ will gives from the above step as:
$\Rightarrow {{a}^{8-1}}+{{b}^{8-1}}$
After subtracting $1$ from $8$, the above function will be:
$\Rightarrow {{a}^{7}}+{{b}^{7}}$
The expansion of the above step is:
$\Rightarrow \left( a+b \right)\left( {{a}^{6}}-{{a}^{5}}b+{{a}^{4}}{{b}^{2}}-{{a}^{3}}{{b}^{3}}+{{a}^{2}}{{b}^{4}}-a{{b}^{5}}+{{b}^{6}} \right)$
Similarly, we will proceed further.
As we can clearly see that there is a common factor among all the values for $n$ that is $\left( a+b \right)$.
Hence, ${{a}^{2n-1}}+{{b}^{2n-1}}$ is divisible by $\left( a+b \right)$.
So, the correct answer is “Option A”.
Note: We need to take care to expand the obtained function after applying the different value of $n$. For expansion, we can use the formula mentioned below:
$\left( {{a}^{n}}+{{b}^{n}} \right)=\left( a+b \right)\left( {{a}^{n-1}}-{{a}^{n-2}}b+{{a}^{n-3}}{{b}^{2}}-\cdot \cdot \cdot +{{a}^{2}}{{b}^{n-3}}-a{{b}^{n-2}}+{{b}^{n-1}} \right)$
Where, $a,b$ and $n$ are natural numbers.
Complete step by step answer:
Since, $n$ is the natural numbers. We will substitute the value of $n$ in the given function with numbers. The given function is:
$\Rightarrow {{a}^{2n-1}}+{{b}^{2n-1}}$
For $n=1$, the function will be:
$\Rightarrow {{a}^{2\times 1-1}}+{{b}^{2\times 1-1}}$
Now, we will simplify it by using multiplication and then subtraction as
$\begin{align}
& \Rightarrow {{a}^{2-1}}+{{b}^{2-1}} \\
& \Rightarrow {{a}^{1}}+{{b}^{1}} \\
\end{align}$
The above step can be written as:
$\Rightarrow a+b$
For $n=2$, we will get from the function:
$\Rightarrow {{a}^{2\times 2-1}}+{{b}^{2\times 2-1}}$
Now, we will be using multiplication in the above step and will get $4$ for multiplication $2$ with \[2\] as:
$\Rightarrow {{a}^{4-1}}+{{b}^{4-1}}$
And then we will subtract $1$ from $4$ and will get $3$:
$\Rightarrow {{a}^{3}}+{{b}^{3}}$
Here, we can expand it as:
\[\Rightarrow \left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)\]
Now, we will check it for $n=3$:
$\Rightarrow {{a}^{2\times 3-1}}+{{b}^{2\times 3-1}}$
After multiplication, the above step will be:
$\Rightarrow {{a}^{6-1}}+{{b}^{6-1}}$
And after subtracting $1$ from $6$, the above function will be:
$\Rightarrow {{a}^{5}}+{{b}^{5}}$
Further we will expand the above step as:
$\Rightarrow \left( a+b \right)\left( {{a}^{4}}-{{a}^{3}}b+{{a}^{2}}{{b}^{2}}-a{{b}^{3}}+{{b}^{4}} \right)$
And for substituting $n=$4, the function will be as:
$\Rightarrow {{a}^{2\times 4-1}}+{{b}^{2\times 4-1}}$
Multiplication of $2$ and $4$ will gives from the above step as:
$\Rightarrow {{a}^{8-1}}+{{b}^{8-1}}$
After subtracting $1$ from $8$, the above function will be:
$\Rightarrow {{a}^{7}}+{{b}^{7}}$
The expansion of the above step is:
$\Rightarrow \left( a+b \right)\left( {{a}^{6}}-{{a}^{5}}b+{{a}^{4}}{{b}^{2}}-{{a}^{3}}{{b}^{3}}+{{a}^{2}}{{b}^{4}}-a{{b}^{5}}+{{b}^{6}} \right)$
Similarly, we will proceed further.
As we can clearly see that there is a common factor among all the values for $n$ that is $\left( a+b \right)$.
Hence, ${{a}^{2n-1}}+{{b}^{2n-1}}$ is divisible by $\left( a+b \right)$.
So, the correct answer is “Option A”.
Note: We need to take care to expand the obtained function after applying the different value of $n$. For expansion, we can use the formula mentioned below:
$\left( {{a}^{n}}+{{b}^{n}} \right)=\left( a+b \right)\left( {{a}^{n-1}}-{{a}^{n-2}}b+{{a}^{n-3}}{{b}^{2}}-\cdot \cdot \cdot +{{a}^{2}}{{b}^{n-3}}-a{{b}^{n-2}}+{{b}^{n-1}} \right)$
Where, $a,b$ and $n$ are natural numbers.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Which place is known as the tea garden of India class 8 social science CBSE

What is pollution? How many types of pollution? Define it

Write a letter to the principal requesting him to grant class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE
