Answer

Verified

484.5k+ views

Hint-In this question first analyse the question, then perform certain steps to simplify the determinant so that solving it is an easy task. Then by simplifying the determinant step by step we can reach the desired answer. Also study carefully the conditions given as they will be useful.

Complete step-by-step answer:

Considering the given condition in the question we can apply some operation on the determinant

Subtract third row from the first and save answer in first i.e.${R_1} \Rightarrow {R_1} - {R_3}$ and also apply ${R_2} \Rightarrow {R_2} - {R_3}{\text{ , where }}{R_1},{R_2}{\text{ and }}{R_3}{\text{ are first, second and third rows}}{\text{.}}$

Therefore, we get$\left| {\begin{array}{*{20}{c}}

{{\text{p - a}}}&{{\text{b - q}}}&{{\text{c - r}}} \\

0&{{\text{q - b}}}&{{\text{c - r}}} \\

0&{\text{b}}&{\text{r}}

\end{array}} \right| = 0$

As coefficient of ${\text{b - q }}$is $0$ .

Solving it further will generate equation

$\left( {{\text{p - a}}} \right)\left| {\begin{array}{*{20}{c}}

{{\text{q - b}}}&{{\text{c - r}}} \\

{\text{b}}&{\text{r}}

\end{array}} \right| + \left( {{\text{c - r}}} \right)\left| {\begin{array}{*{20}{c}}

0&{{\text{q - b}}} \\

{\text{a}}&{\text{b}}

\end{array}} \right| = 0$

Simplifying the above equation, $\left( {{\text{p - a}}} \right)\left[ {{\text{r}}\left( {{\text{q - b}}} \right) - {\text{b}}\left( {{\text{c - r}}} \right)} \right] + \left( {{\text{c - r}}} \right)\left[ { - {\text{a}}\left( {{\text{q - b}}} \right)} \right] = 0$

From given conditions we can deduce that ${\text{p - a}} \ne {\text{0,q - b}} \ne {\text{0,r - c}} \ne {\text{0}}$

Now, by dividing both sides by $\left[ {\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)\left( {{\text{r - c}}} \right)} \right]$ we get

$\dfrac{{{\text{r}}\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)}}{{\left[ {\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)\left( {{\text{r - c}}} \right)} \right]}} -

\dfrac{{{\text{b}}\left( {{\text{p - a}}} \right)\left( {{\text{c - r}}} \right)}}{{\left[ {\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)\left( {{\text{r - c}}} \right)} \right]}} -

\dfrac{{{\text{a}}\left( {{\text{c - r}}} \right)\left( {{\text{q - b}}} \right)}}{{\left[ {\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)\left( {{\text{r - c}}} \right)} \right]}} = 0$

By cancelling the same terms in numerator and denominator we get

$\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} + \dfrac{{\text{b}}}{{\left( {{\text{q - b}}}

\right)}} + \dfrac{{\text{a}}}{{\left( {{\text{p - a}}} \right)}} = 0$

Then we need to add and subtract ${\text{q}}$ from the numerator of term

$\dfrac{{\text{b}}}{{{\text{q - b}}}}$ and add and subtract ${\text{p}}$ from the numerator of term $\dfrac{{\text{a}}}{{{\text{p - a}}}}$

$\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} + \dfrac{{{\text{b + q - q}}}}{{\left( {{\text{q - b}}} \right)}} + \dfrac{{{\text{a + p - p}}}}{{\left( {{\text{p - a}}} \right)}} = 0$

From this we get

$\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} + \dfrac{{\left( {{\text{b - q}}} \right)}}{{\left( {{\text{q - b}}} \right)}} + \dfrac{{\text{q}}}{{\left( {{\text{q - b}}} \right)}} + \dfrac{{\left( {{\text{a - p}}} \right)}}{{\left( {{\text{p - a}}} \right)}} + \dfrac{{\text{a}}}{{\left( {{\text{p - a}}} \right)}} = 0$

This implies that

$

\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} - 1 + \dfrac{{\text{q}}}{{\left( {{\text{q - b}}} \right)}} - 1 + \dfrac{{\text{p}}}{{\left( {{\text{p - a}}} \right)}} = 0 \\

\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} + \dfrac{{\text{q}}}{{\left( {{\text{q - b}}} \right)}} + \dfrac{{\text{p}}}{{\left( {{\text{p - a}}} \right)}} = 2 \\

$

Hence the value of the question is 2.

Note- In getting the values of these types of questions we need to know the right steps in solving a determinant and then simplifying it because simplifying a determinant directly can sometimes be confusing and we may not get the desired result. Therefore, for these questions you need to practise solving the determinants.

Complete step-by-step answer:

Considering the given condition in the question we can apply some operation on the determinant

Subtract third row from the first and save answer in first i.e.${R_1} \Rightarrow {R_1} - {R_3}$ and also apply ${R_2} \Rightarrow {R_2} - {R_3}{\text{ , where }}{R_1},{R_2}{\text{ and }}{R_3}{\text{ are first, second and third rows}}{\text{.}}$

Therefore, we get$\left| {\begin{array}{*{20}{c}}

{{\text{p - a}}}&{{\text{b - q}}}&{{\text{c - r}}} \\

0&{{\text{q - b}}}&{{\text{c - r}}} \\

0&{\text{b}}&{\text{r}}

\end{array}} \right| = 0$

As coefficient of ${\text{b - q }}$is $0$ .

Solving it further will generate equation

$\left( {{\text{p - a}}} \right)\left| {\begin{array}{*{20}{c}}

{{\text{q - b}}}&{{\text{c - r}}} \\

{\text{b}}&{\text{r}}

\end{array}} \right| + \left( {{\text{c - r}}} \right)\left| {\begin{array}{*{20}{c}}

0&{{\text{q - b}}} \\

{\text{a}}&{\text{b}}

\end{array}} \right| = 0$

Simplifying the above equation, $\left( {{\text{p - a}}} \right)\left[ {{\text{r}}\left( {{\text{q - b}}} \right) - {\text{b}}\left( {{\text{c - r}}} \right)} \right] + \left( {{\text{c - r}}} \right)\left[ { - {\text{a}}\left( {{\text{q - b}}} \right)} \right] = 0$

From given conditions we can deduce that ${\text{p - a}} \ne {\text{0,q - b}} \ne {\text{0,r - c}} \ne {\text{0}}$

Now, by dividing both sides by $\left[ {\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)\left( {{\text{r - c}}} \right)} \right]$ we get

$\dfrac{{{\text{r}}\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)}}{{\left[ {\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)\left( {{\text{r - c}}} \right)} \right]}} -

\dfrac{{{\text{b}}\left( {{\text{p - a}}} \right)\left( {{\text{c - r}}} \right)}}{{\left[ {\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)\left( {{\text{r - c}}} \right)} \right]}} -

\dfrac{{{\text{a}}\left( {{\text{c - r}}} \right)\left( {{\text{q - b}}} \right)}}{{\left[ {\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)\left( {{\text{r - c}}} \right)} \right]}} = 0$

By cancelling the same terms in numerator and denominator we get

$\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} + \dfrac{{\text{b}}}{{\left( {{\text{q - b}}}

\right)}} + \dfrac{{\text{a}}}{{\left( {{\text{p - a}}} \right)}} = 0$

Then we need to add and subtract ${\text{q}}$ from the numerator of term

$\dfrac{{\text{b}}}{{{\text{q - b}}}}$ and add and subtract ${\text{p}}$ from the numerator of term $\dfrac{{\text{a}}}{{{\text{p - a}}}}$

$\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} + \dfrac{{{\text{b + q - q}}}}{{\left( {{\text{q - b}}} \right)}} + \dfrac{{{\text{a + p - p}}}}{{\left( {{\text{p - a}}} \right)}} = 0$

From this we get

$\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} + \dfrac{{\left( {{\text{b - q}}} \right)}}{{\left( {{\text{q - b}}} \right)}} + \dfrac{{\text{q}}}{{\left( {{\text{q - b}}} \right)}} + \dfrac{{\left( {{\text{a - p}}} \right)}}{{\left( {{\text{p - a}}} \right)}} + \dfrac{{\text{a}}}{{\left( {{\text{p - a}}} \right)}} = 0$

This implies that

$

\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} - 1 + \dfrac{{\text{q}}}{{\left( {{\text{q - b}}} \right)}} - 1 + \dfrac{{\text{p}}}{{\left( {{\text{p - a}}} \right)}} = 0 \\

\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} + \dfrac{{\text{q}}}{{\left( {{\text{q - b}}} \right)}} + \dfrac{{\text{p}}}{{\left( {{\text{p - a}}} \right)}} = 2 \\

$

Hence the value of the question is 2.

Note- In getting the values of these types of questions we need to know the right steps in solving a determinant and then simplifying it because simplifying a determinant directly can sometimes be confusing and we may not get the desired result. Therefore, for these questions you need to practise solving the determinants.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the past participle of wear Is it worn or class 10 english CBSE

Discuss the main reasons for poverty in India

A Paragraph on Pollution in about 100-150 Words

Write an application to the principal requesting five class 10 english CBSE