If $a \ne p,b \ne q,c \ne r$ and$\left| {\begin{array}{*{20}{c}}
p&b&c \\
a&q&c \\
a&b&r
\end{array}} \right| = 0$ then find the value of $\dfrac{p}{{p - a}} + \dfrac{q}{{q - b}} + \dfrac{r}{{r - c}}$ ?
Last updated date: 23rd Mar 2023
•
Total views: 305.7k
•
Views today: 7.86k
Answer
305.7k+ views
Hint-In this question first analyse the question, then perform certain steps to simplify the determinant so that solving it is an easy task. Then by simplifying the determinant step by step we can reach the desired answer. Also study carefully the conditions given as they will be useful.
Complete step-by-step answer:
Considering the given condition in the question we can apply some operation on the determinant
Subtract third row from the first and save answer in first i.e.${R_1} \Rightarrow {R_1} - {R_3}$ and also apply ${R_2} \Rightarrow {R_2} - {R_3}{\text{ , where }}{R_1},{R_2}{\text{ and }}{R_3}{\text{ are first, second and third rows}}{\text{.}}$
Therefore, we get$\left| {\begin{array}{*{20}{c}}
{{\text{p - a}}}&{{\text{b - q}}}&{{\text{c - r}}} \\
0&{{\text{q - b}}}&{{\text{c - r}}} \\
0&{\text{b}}&{\text{r}}
\end{array}} \right| = 0$
As coefficient of ${\text{b - q }}$is $0$ .
Solving it further will generate equation
$\left( {{\text{p - a}}} \right)\left| {\begin{array}{*{20}{c}}
{{\text{q - b}}}&{{\text{c - r}}} \\
{\text{b}}&{\text{r}}
\end{array}} \right| + \left( {{\text{c - r}}} \right)\left| {\begin{array}{*{20}{c}}
0&{{\text{q - b}}} \\
{\text{a}}&{\text{b}}
\end{array}} \right| = 0$
Simplifying the above equation, $\left( {{\text{p - a}}} \right)\left[ {{\text{r}}\left( {{\text{q - b}}} \right) - {\text{b}}\left( {{\text{c - r}}} \right)} \right] + \left( {{\text{c - r}}} \right)\left[ { - {\text{a}}\left( {{\text{q - b}}} \right)} \right] = 0$
From given conditions we can deduce that ${\text{p - a}} \ne {\text{0,q - b}} \ne {\text{0,r - c}} \ne {\text{0}}$
Now, by dividing both sides by $\left[ {\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)\left( {{\text{r - c}}} \right)} \right]$ we get
$\dfrac{{{\text{r}}\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)}}{{\left[ {\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)\left( {{\text{r - c}}} \right)} \right]}} -
\dfrac{{{\text{b}}\left( {{\text{p - a}}} \right)\left( {{\text{c - r}}} \right)}}{{\left[ {\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)\left( {{\text{r - c}}} \right)} \right]}} -
\dfrac{{{\text{a}}\left( {{\text{c - r}}} \right)\left( {{\text{q - b}}} \right)}}{{\left[ {\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)\left( {{\text{r - c}}} \right)} \right]}} = 0$
By cancelling the same terms in numerator and denominator we get
$\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} + \dfrac{{\text{b}}}{{\left( {{\text{q - b}}}
\right)}} + \dfrac{{\text{a}}}{{\left( {{\text{p - a}}} \right)}} = 0$
Then we need to add and subtract ${\text{q}}$ from the numerator of term
$\dfrac{{\text{b}}}{{{\text{q - b}}}}$ and add and subtract ${\text{p}}$ from the numerator of term $\dfrac{{\text{a}}}{{{\text{p - a}}}}$
$\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} + \dfrac{{{\text{b + q - q}}}}{{\left( {{\text{q - b}}} \right)}} + \dfrac{{{\text{a + p - p}}}}{{\left( {{\text{p - a}}} \right)}} = 0$
From this we get
$\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} + \dfrac{{\left( {{\text{b - q}}} \right)}}{{\left( {{\text{q - b}}} \right)}} + \dfrac{{\text{q}}}{{\left( {{\text{q - b}}} \right)}} + \dfrac{{\left( {{\text{a - p}}} \right)}}{{\left( {{\text{p - a}}} \right)}} + \dfrac{{\text{a}}}{{\left( {{\text{p - a}}} \right)}} = 0$
This implies that
$
\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} - 1 + \dfrac{{\text{q}}}{{\left( {{\text{q - b}}} \right)}} - 1 + \dfrac{{\text{p}}}{{\left( {{\text{p - a}}} \right)}} = 0 \\
\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} + \dfrac{{\text{q}}}{{\left( {{\text{q - b}}} \right)}} + \dfrac{{\text{p}}}{{\left( {{\text{p - a}}} \right)}} = 2 \\
$
Hence the value of the question is 2.
Note- In getting the values of these types of questions we need to know the right steps in solving a determinant and then simplifying it because simplifying a determinant directly can sometimes be confusing and we may not get the desired result. Therefore, for these questions you need to practise solving the determinants.
Complete step-by-step answer:
Considering the given condition in the question we can apply some operation on the determinant
Subtract third row from the first and save answer in first i.e.${R_1} \Rightarrow {R_1} - {R_3}$ and also apply ${R_2} \Rightarrow {R_2} - {R_3}{\text{ , where }}{R_1},{R_2}{\text{ and }}{R_3}{\text{ are first, second and third rows}}{\text{.}}$
Therefore, we get$\left| {\begin{array}{*{20}{c}}
{{\text{p - a}}}&{{\text{b - q}}}&{{\text{c - r}}} \\
0&{{\text{q - b}}}&{{\text{c - r}}} \\
0&{\text{b}}&{\text{r}}
\end{array}} \right| = 0$
As coefficient of ${\text{b - q }}$is $0$ .
Solving it further will generate equation
$\left( {{\text{p - a}}} \right)\left| {\begin{array}{*{20}{c}}
{{\text{q - b}}}&{{\text{c - r}}} \\
{\text{b}}&{\text{r}}
\end{array}} \right| + \left( {{\text{c - r}}} \right)\left| {\begin{array}{*{20}{c}}
0&{{\text{q - b}}} \\
{\text{a}}&{\text{b}}
\end{array}} \right| = 0$
Simplifying the above equation, $\left( {{\text{p - a}}} \right)\left[ {{\text{r}}\left( {{\text{q - b}}} \right) - {\text{b}}\left( {{\text{c - r}}} \right)} \right] + \left( {{\text{c - r}}} \right)\left[ { - {\text{a}}\left( {{\text{q - b}}} \right)} \right] = 0$
From given conditions we can deduce that ${\text{p - a}} \ne {\text{0,q - b}} \ne {\text{0,r - c}} \ne {\text{0}}$
Now, by dividing both sides by $\left[ {\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)\left( {{\text{r - c}}} \right)} \right]$ we get
$\dfrac{{{\text{r}}\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)}}{{\left[ {\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)\left( {{\text{r - c}}} \right)} \right]}} -
\dfrac{{{\text{b}}\left( {{\text{p - a}}} \right)\left( {{\text{c - r}}} \right)}}{{\left[ {\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)\left( {{\text{r - c}}} \right)} \right]}} -
\dfrac{{{\text{a}}\left( {{\text{c - r}}} \right)\left( {{\text{q - b}}} \right)}}{{\left[ {\left( {{\text{p - a}}} \right)\left( {{\text{q - b}}} \right)\left( {{\text{r - c}}} \right)} \right]}} = 0$
By cancelling the same terms in numerator and denominator we get
$\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} + \dfrac{{\text{b}}}{{\left( {{\text{q - b}}}
\right)}} + \dfrac{{\text{a}}}{{\left( {{\text{p - a}}} \right)}} = 0$
Then we need to add and subtract ${\text{q}}$ from the numerator of term
$\dfrac{{\text{b}}}{{{\text{q - b}}}}$ and add and subtract ${\text{p}}$ from the numerator of term $\dfrac{{\text{a}}}{{{\text{p - a}}}}$
$\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} + \dfrac{{{\text{b + q - q}}}}{{\left( {{\text{q - b}}} \right)}} + \dfrac{{{\text{a + p - p}}}}{{\left( {{\text{p - a}}} \right)}} = 0$
From this we get
$\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} + \dfrac{{\left( {{\text{b - q}}} \right)}}{{\left( {{\text{q - b}}} \right)}} + \dfrac{{\text{q}}}{{\left( {{\text{q - b}}} \right)}} + \dfrac{{\left( {{\text{a - p}}} \right)}}{{\left( {{\text{p - a}}} \right)}} + \dfrac{{\text{a}}}{{\left( {{\text{p - a}}} \right)}} = 0$
This implies that
$
\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} - 1 + \dfrac{{\text{q}}}{{\left( {{\text{q - b}}} \right)}} - 1 + \dfrac{{\text{p}}}{{\left( {{\text{p - a}}} \right)}} = 0 \\
\dfrac{{\text{r}}}{{\left( {{\text{r - c}}} \right)}} + \dfrac{{\text{q}}}{{\left( {{\text{q - b}}} \right)}} + \dfrac{{\text{p}}}{{\left( {{\text{p - a}}} \right)}} = 2 \\
$
Hence the value of the question is 2.
Note- In getting the values of these types of questions we need to know the right steps in solving a determinant and then simplifying it because simplifying a determinant directly can sometimes be confusing and we may not get the desired result. Therefore, for these questions you need to practise solving the determinants.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

The coordinates of the points A and B are a0 and a0 class 11 maths JEE_Main

Trending doubts
Write an application to the principal requesting five class 10 english CBSE

Tropic of Cancer passes through how many states? Name them.

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE

What is per capita income

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India
