# If a matrix is given by \[A=\left[ \begin{matrix}

i & 0 \\

0 & i \\

\end{matrix} \right]\], then find the value of \[{{A}^{2}}\].

Answer

Verified

364.2k+ views

Hint: For any general 2 x 2 matrix, \[M=\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]\], \[{{M}^{2}}=\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]\times \left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]=\left[ \begin{matrix}

{{a}^{2}}+bc & ab+bd \\

ca+dc & cb+{{d}^{2}} \\

\end{matrix} \right]\]. So, to find \[{{A}^{2}}\], use this formula of \[{{M}^{2}}\] by considering a = i, b = 0, c = 0 and d = i.

We are given a 2 x 2 matrix, \[A=\left[ \begin{matrix}

i & 0 \\

0 & i \\

\end{matrix} \right]\]

Here, we have to find \[{{A}^{2}}\].

Let us take the matrix given in the question,

\[A=\left[ \begin{matrix}

i & 0 \\

0 & i \\

\end{matrix} \right]\] which is a 2 x 2 matrix as it has 2 rows and 2 columns.

Let us taken the general 2 x 2 matrix, that is

\[M=\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]\]

Now, we know that \[{{M}^{2}}=M\times M....\left( i \right)\]

By, putting the general 2 x 2 matrix in place of M in the right hand side (RHS) of the equation (i), we get,

\[{{M}^{2}}={{\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]}_{2\times 2}}\times {{\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]}_{2\times 2}}\]

We know that matrix multiplication is carried out by multiplying rows of the first matrix to columns of the second matrix. Therefore, we get above expression as,

\[{{M}^{2}}=\left[ \begin{matrix}

a\times a+b\times c & a\times b+b\times d \\

c\times a+d\times c & c\times b+d\times d \\

\end{matrix} \right].....\left( ii \right)\]

By simplifying the above expression, we get,

\[{{M}^{2}}=\left[ \begin{matrix}

{{a}^{2}}+bc & ab+bd \\

ca+dc & cb+{{d}^{2}} \\

\end{matrix} \right]\]

Now, we will compare the matrix given in the question, that is \[A=\left[ \begin{matrix}

i & 0 \\

0 & i \\

\end{matrix} \right]\] with general 2 x 2 matrix \[M=\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]\] , so we will get,

\[\begin{align}

& a=i \\

& b=0 \\

& c=0 \\

& d=i \\

\end{align}\]

Now, to get the value of \[{{A}^{2}}\], we will put these values of a, b, c and d in equation (ii). So we will get,

\[{{A}^{2}}=\left[ \begin{matrix}

{{\left( i \right)}^{2}}+0\times 0 & i\times \left( 0 \right)+\left( 0 \right)\times i \\

0\times i+i\times 0 & 0\times 0+{{\left( i \right)}^{2}} \\

\end{matrix} \right]\]

By simplifying the above expression, we get,

\[{{A}^{2}}=\left[ \begin{matrix}

{{i}^{2}} & 0 \\

0 & {{i}^{2}} \\

\end{matrix} \right]\]

As we know that it is an imaginary number and its value is \[\sqrt{-1}\]. Therefore, we get \[{{i}^{2}}=-1\].

Hence, we finally get \[{{A}^{2}}\] as \[\left[ \begin{matrix}

{{i}^{2}} & 0 \\

0 & {{i}^{2}} \\

\end{matrix} \right]=\left[ \begin{matrix}

-1 & 0 \\

0 & -1 \\

\end{matrix} \right]\].

Note: Students must note that to perform the matrix multiplication, the number of columns in the first matrix should be equal to the number of rows in the second matrix. Students should also remember that matrix multiplication is only carried out by multiplying rows of the first matrix by columns of the second matrix unlike in determinant. In determinant, multiplication can be carried out by multiplying row to row and column to column as well. Therefore, students must not confuse between multiplication of two matrices or two determinants. Also, take special care in taking the values of the variables a, b, c and d.

a & b \\

c & d \\

\end{matrix} \right]\], \[{{M}^{2}}=\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]\times \left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]=\left[ \begin{matrix}

{{a}^{2}}+bc & ab+bd \\

ca+dc & cb+{{d}^{2}} \\

\end{matrix} \right]\]. So, to find \[{{A}^{2}}\], use this formula of \[{{M}^{2}}\] by considering a = i, b = 0, c = 0 and d = i.

We are given a 2 x 2 matrix, \[A=\left[ \begin{matrix}

i & 0 \\

0 & i \\

\end{matrix} \right]\]

Here, we have to find \[{{A}^{2}}\].

Let us take the matrix given in the question,

\[A=\left[ \begin{matrix}

i & 0 \\

0 & i \\

\end{matrix} \right]\] which is a 2 x 2 matrix as it has 2 rows and 2 columns.

Let us taken the general 2 x 2 matrix, that is

\[M=\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]\]

Now, we know that \[{{M}^{2}}=M\times M....\left( i \right)\]

By, putting the general 2 x 2 matrix in place of M in the right hand side (RHS) of the equation (i), we get,

\[{{M}^{2}}={{\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]}_{2\times 2}}\times {{\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]}_{2\times 2}}\]

We know that matrix multiplication is carried out by multiplying rows of the first matrix to columns of the second matrix. Therefore, we get above expression as,

\[{{M}^{2}}=\left[ \begin{matrix}

a\times a+b\times c & a\times b+b\times d \\

c\times a+d\times c & c\times b+d\times d \\

\end{matrix} \right].....\left( ii \right)\]

By simplifying the above expression, we get,

\[{{M}^{2}}=\left[ \begin{matrix}

{{a}^{2}}+bc & ab+bd \\

ca+dc & cb+{{d}^{2}} \\

\end{matrix} \right]\]

Now, we will compare the matrix given in the question, that is \[A=\left[ \begin{matrix}

i & 0 \\

0 & i \\

\end{matrix} \right]\] with general 2 x 2 matrix \[M=\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]\] , so we will get,

\[\begin{align}

& a=i \\

& b=0 \\

& c=0 \\

& d=i \\

\end{align}\]

Now, to get the value of \[{{A}^{2}}\], we will put these values of a, b, c and d in equation (ii). So we will get,

\[{{A}^{2}}=\left[ \begin{matrix}

{{\left( i \right)}^{2}}+0\times 0 & i\times \left( 0 \right)+\left( 0 \right)\times i \\

0\times i+i\times 0 & 0\times 0+{{\left( i \right)}^{2}} \\

\end{matrix} \right]\]

By simplifying the above expression, we get,

\[{{A}^{2}}=\left[ \begin{matrix}

{{i}^{2}} & 0 \\

0 & {{i}^{2}} \\

\end{matrix} \right]\]

As we know that it is an imaginary number and its value is \[\sqrt{-1}\]. Therefore, we get \[{{i}^{2}}=-1\].

Hence, we finally get \[{{A}^{2}}\] as \[\left[ \begin{matrix}

{{i}^{2}} & 0 \\

0 & {{i}^{2}} \\

\end{matrix} \right]=\left[ \begin{matrix}

-1 & 0 \\

0 & -1 \\

\end{matrix} \right]\].

Note: Students must note that to perform the matrix multiplication, the number of columns in the first matrix should be equal to the number of rows in the second matrix. Students should also remember that matrix multiplication is only carried out by multiplying rows of the first matrix by columns of the second matrix unlike in determinant. In determinant, multiplication can be carried out by multiplying row to row and column to column as well. Therefore, students must not confuse between multiplication of two matrices or two determinants. Also, take special care in taking the values of the variables a, b, c and d.

Last updated date: 01st Oct 2023

â€¢

Total views: 364.2k

â€¢

Views today: 7.64k

Recently Updated Pages

What do you mean by public facilities

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

10 Slogans on Save the Tiger

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

How many millions make a billion class 6 maths CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the past tense of read class 10 english CBSE

How many crores make 10 million class 7 maths CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE