
If a matrix is given by \[A=\left[ \begin{matrix}
i & 0 \\
0 & i \\
\end{matrix} \right]\], then find the value of \[{{A}^{2}}\].
Answer
604.8k+ views
Hint: For any general 2 x 2 matrix, \[M=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\], \[{{M}^{2}}=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\times \left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]=\left[ \begin{matrix}
{{a}^{2}}+bc & ab+bd \\
ca+dc & cb+{{d}^{2}} \\
\end{matrix} \right]\]. So, to find \[{{A}^{2}}\], use this formula of \[{{M}^{2}}\] by considering a = i, b = 0, c = 0 and d = i.
We are given a 2 x 2 matrix, \[A=\left[ \begin{matrix}
i & 0 \\
0 & i \\
\end{matrix} \right]\]
Here, we have to find \[{{A}^{2}}\].
Let us take the matrix given in the question,
\[A=\left[ \begin{matrix}
i & 0 \\
0 & i \\
\end{matrix} \right]\] which is a 2 x 2 matrix as it has 2 rows and 2 columns.
Let us taken the general 2 x 2 matrix, that is
\[M=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\]
Now, we know that \[{{M}^{2}}=M\times M....\left( i \right)\]
By, putting the general 2 x 2 matrix in place of M in the right hand side (RHS) of the equation (i), we get,
\[{{M}^{2}}={{\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]}_{2\times 2}}\times {{\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]}_{2\times 2}}\]
We know that matrix multiplication is carried out by multiplying rows of the first matrix to columns of the second matrix. Therefore, we get above expression as,
\[{{M}^{2}}=\left[ \begin{matrix}
a\times a+b\times c & a\times b+b\times d \\
c\times a+d\times c & c\times b+d\times d \\
\end{matrix} \right].....\left( ii \right)\]
By simplifying the above expression, we get,
\[{{M}^{2}}=\left[ \begin{matrix}
{{a}^{2}}+bc & ab+bd \\
ca+dc & cb+{{d}^{2}} \\
\end{matrix} \right]\]
Now, we will compare the matrix given in the question, that is \[A=\left[ \begin{matrix}
i & 0 \\
0 & i \\
\end{matrix} \right]\] with general 2 x 2 matrix \[M=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\] , so we will get,
\[\begin{align}
& a=i \\
& b=0 \\
& c=0 \\
& d=i \\
\end{align}\]
Now, to get the value of \[{{A}^{2}}\], we will put these values of a, b, c and d in equation (ii). So we will get,
\[{{A}^{2}}=\left[ \begin{matrix}
{{\left( i \right)}^{2}}+0\times 0 & i\times \left( 0 \right)+\left( 0 \right)\times i \\
0\times i+i\times 0 & 0\times 0+{{\left( i \right)}^{2}} \\
\end{matrix} \right]\]
By simplifying the above expression, we get,
\[{{A}^{2}}=\left[ \begin{matrix}
{{i}^{2}} & 0 \\
0 & {{i}^{2}} \\
\end{matrix} \right]\]
As we know that it is an imaginary number and its value is \[\sqrt{-1}\]. Therefore, we get \[{{i}^{2}}=-1\].
Hence, we finally get \[{{A}^{2}}\] as \[\left[ \begin{matrix}
{{i}^{2}} & 0 \\
0 & {{i}^{2}} \\
\end{matrix} \right]=\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right]\].
Note: Students must note that to perform the matrix multiplication, the number of columns in the first matrix should be equal to the number of rows in the second matrix. Students should also remember that matrix multiplication is only carried out by multiplying rows of the first matrix by columns of the second matrix unlike in determinant. In determinant, multiplication can be carried out by multiplying row to row and column to column as well. Therefore, students must not confuse between multiplication of two matrices or two determinants. Also, take special care in taking the values of the variables a, b, c and d.
a & b \\
c & d \\
\end{matrix} \right]\], \[{{M}^{2}}=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\times \left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]=\left[ \begin{matrix}
{{a}^{2}}+bc & ab+bd \\
ca+dc & cb+{{d}^{2}} \\
\end{matrix} \right]\]. So, to find \[{{A}^{2}}\], use this formula of \[{{M}^{2}}\] by considering a = i, b = 0, c = 0 and d = i.
We are given a 2 x 2 matrix, \[A=\left[ \begin{matrix}
i & 0 \\
0 & i \\
\end{matrix} \right]\]
Here, we have to find \[{{A}^{2}}\].
Let us take the matrix given in the question,
\[A=\left[ \begin{matrix}
i & 0 \\
0 & i \\
\end{matrix} \right]\] which is a 2 x 2 matrix as it has 2 rows and 2 columns.
Let us taken the general 2 x 2 matrix, that is
\[M=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\]
Now, we know that \[{{M}^{2}}=M\times M....\left( i \right)\]
By, putting the general 2 x 2 matrix in place of M in the right hand side (RHS) of the equation (i), we get,
\[{{M}^{2}}={{\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]}_{2\times 2}}\times {{\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]}_{2\times 2}}\]
We know that matrix multiplication is carried out by multiplying rows of the first matrix to columns of the second matrix. Therefore, we get above expression as,
\[{{M}^{2}}=\left[ \begin{matrix}
a\times a+b\times c & a\times b+b\times d \\
c\times a+d\times c & c\times b+d\times d \\
\end{matrix} \right].....\left( ii \right)\]
By simplifying the above expression, we get,
\[{{M}^{2}}=\left[ \begin{matrix}
{{a}^{2}}+bc & ab+bd \\
ca+dc & cb+{{d}^{2}} \\
\end{matrix} \right]\]
Now, we will compare the matrix given in the question, that is \[A=\left[ \begin{matrix}
i & 0 \\
0 & i \\
\end{matrix} \right]\] with general 2 x 2 matrix \[M=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\] , so we will get,
\[\begin{align}
& a=i \\
& b=0 \\
& c=0 \\
& d=i \\
\end{align}\]
Now, to get the value of \[{{A}^{2}}\], we will put these values of a, b, c and d in equation (ii). So we will get,
\[{{A}^{2}}=\left[ \begin{matrix}
{{\left( i \right)}^{2}}+0\times 0 & i\times \left( 0 \right)+\left( 0 \right)\times i \\
0\times i+i\times 0 & 0\times 0+{{\left( i \right)}^{2}} \\
\end{matrix} \right]\]
By simplifying the above expression, we get,
\[{{A}^{2}}=\left[ \begin{matrix}
{{i}^{2}} & 0 \\
0 & {{i}^{2}} \\
\end{matrix} \right]\]
As we know that it is an imaginary number and its value is \[\sqrt{-1}\]. Therefore, we get \[{{i}^{2}}=-1\].
Hence, we finally get \[{{A}^{2}}\] as \[\left[ \begin{matrix}
{{i}^{2}} & 0 \\
0 & {{i}^{2}} \\
\end{matrix} \right]=\left[ \begin{matrix}
-1 & 0 \\
0 & -1 \\
\end{matrix} \right]\].
Note: Students must note that to perform the matrix multiplication, the number of columns in the first matrix should be equal to the number of rows in the second matrix. Students should also remember that matrix multiplication is only carried out by multiplying rows of the first matrix by columns of the second matrix unlike in determinant. In determinant, multiplication can be carried out by multiplying row to row and column to column as well. Therefore, students must not confuse between multiplication of two matrices or two determinants. Also, take special care in taking the values of the variables a, b, c and d.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

