# If a matrix is given by \[A=\left[ \begin{matrix}

i & 0 \\

0 & i \\

\end{matrix} \right]\], then find the value of \[{{A}^{2}}\].

Last updated date: 21st Mar 2023

•

Total views: 307.2k

•

Views today: 7.85k

Answer

Verified

307.2k+ views

Hint: For any general 2 x 2 matrix, \[M=\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]\], \[{{M}^{2}}=\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]\times \left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]=\left[ \begin{matrix}

{{a}^{2}}+bc & ab+bd \\

ca+dc & cb+{{d}^{2}} \\

\end{matrix} \right]\]. So, to find \[{{A}^{2}}\], use this formula of \[{{M}^{2}}\] by considering a = i, b = 0, c = 0 and d = i.

We are given a 2 x 2 matrix, \[A=\left[ \begin{matrix}

i & 0 \\

0 & i \\

\end{matrix} \right]\]

Here, we have to find \[{{A}^{2}}\].

Let us take the matrix given in the question,

\[A=\left[ \begin{matrix}

i & 0 \\

0 & i \\

\end{matrix} \right]\] which is a 2 x 2 matrix as it has 2 rows and 2 columns.

Let us taken the general 2 x 2 matrix, that is

\[M=\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]\]

Now, we know that \[{{M}^{2}}=M\times M....\left( i \right)\]

By, putting the general 2 x 2 matrix in place of M in the right hand side (RHS) of the equation (i), we get,

\[{{M}^{2}}={{\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]}_{2\times 2}}\times {{\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]}_{2\times 2}}\]

We know that matrix multiplication is carried out by multiplying rows of the first matrix to columns of the second matrix. Therefore, we get above expression as,

\[{{M}^{2}}=\left[ \begin{matrix}

a\times a+b\times c & a\times b+b\times d \\

c\times a+d\times c & c\times b+d\times d \\

\end{matrix} \right].....\left( ii \right)\]

By simplifying the above expression, we get,

\[{{M}^{2}}=\left[ \begin{matrix}

{{a}^{2}}+bc & ab+bd \\

ca+dc & cb+{{d}^{2}} \\

\end{matrix} \right]\]

Now, we will compare the matrix given in the question, that is \[A=\left[ \begin{matrix}

i & 0 \\

0 & i \\

\end{matrix} \right]\] with general 2 x 2 matrix \[M=\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]\] , so we will get,

\[\begin{align}

& a=i \\

& b=0 \\

& c=0 \\

& d=i \\

\end{align}\]

Now, to get the value of \[{{A}^{2}}\], we will put these values of a, b, c and d in equation (ii). So we will get,

\[{{A}^{2}}=\left[ \begin{matrix}

{{\left( i \right)}^{2}}+0\times 0 & i\times \left( 0 \right)+\left( 0 \right)\times i \\

0\times i+i\times 0 & 0\times 0+{{\left( i \right)}^{2}} \\

\end{matrix} \right]\]

By simplifying the above expression, we get,

\[{{A}^{2}}=\left[ \begin{matrix}

{{i}^{2}} & 0 \\

0 & {{i}^{2}} \\

\end{matrix} \right]\]

As we know that it is an imaginary number and its value is \[\sqrt{-1}\]. Therefore, we get \[{{i}^{2}}=-1\].

Hence, we finally get \[{{A}^{2}}\] as \[\left[ \begin{matrix}

{{i}^{2}} & 0 \\

0 & {{i}^{2}} \\

\end{matrix} \right]=\left[ \begin{matrix}

-1 & 0 \\

0 & -1 \\

\end{matrix} \right]\].

Note: Students must note that to perform the matrix multiplication, the number of columns in the first matrix should be equal to the number of rows in the second matrix. Students should also remember that matrix multiplication is only carried out by multiplying rows of the first matrix by columns of the second matrix unlike in determinant. In determinant, multiplication can be carried out by multiplying row to row and column to column as well. Therefore, students must not confuse between multiplication of two matrices or two determinants. Also, take special care in taking the values of the variables a, b, c and d.

a & b \\

c & d \\

\end{matrix} \right]\], \[{{M}^{2}}=\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]\times \left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]=\left[ \begin{matrix}

{{a}^{2}}+bc & ab+bd \\

ca+dc & cb+{{d}^{2}} \\

\end{matrix} \right]\]. So, to find \[{{A}^{2}}\], use this formula of \[{{M}^{2}}\] by considering a = i, b = 0, c = 0 and d = i.

We are given a 2 x 2 matrix, \[A=\left[ \begin{matrix}

i & 0 \\

0 & i \\

\end{matrix} \right]\]

Here, we have to find \[{{A}^{2}}\].

Let us take the matrix given in the question,

\[A=\left[ \begin{matrix}

i & 0 \\

0 & i \\

\end{matrix} \right]\] which is a 2 x 2 matrix as it has 2 rows and 2 columns.

Let us taken the general 2 x 2 matrix, that is

\[M=\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]\]

Now, we know that \[{{M}^{2}}=M\times M....\left( i \right)\]

By, putting the general 2 x 2 matrix in place of M in the right hand side (RHS) of the equation (i), we get,

\[{{M}^{2}}={{\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]}_{2\times 2}}\times {{\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]}_{2\times 2}}\]

We know that matrix multiplication is carried out by multiplying rows of the first matrix to columns of the second matrix. Therefore, we get above expression as,

\[{{M}^{2}}=\left[ \begin{matrix}

a\times a+b\times c & a\times b+b\times d \\

c\times a+d\times c & c\times b+d\times d \\

\end{matrix} \right].....\left( ii \right)\]

By simplifying the above expression, we get,

\[{{M}^{2}}=\left[ \begin{matrix}

{{a}^{2}}+bc & ab+bd \\

ca+dc & cb+{{d}^{2}} \\

\end{matrix} \right]\]

Now, we will compare the matrix given in the question, that is \[A=\left[ \begin{matrix}

i & 0 \\

0 & i \\

\end{matrix} \right]\] with general 2 x 2 matrix \[M=\left[ \begin{matrix}

a & b \\

c & d \\

\end{matrix} \right]\] , so we will get,

\[\begin{align}

& a=i \\

& b=0 \\

& c=0 \\

& d=i \\

\end{align}\]

Now, to get the value of \[{{A}^{2}}\], we will put these values of a, b, c and d in equation (ii). So we will get,

\[{{A}^{2}}=\left[ \begin{matrix}

{{\left( i \right)}^{2}}+0\times 0 & i\times \left( 0 \right)+\left( 0 \right)\times i \\

0\times i+i\times 0 & 0\times 0+{{\left( i \right)}^{2}} \\

\end{matrix} \right]\]

By simplifying the above expression, we get,

\[{{A}^{2}}=\left[ \begin{matrix}

{{i}^{2}} & 0 \\

0 & {{i}^{2}} \\

\end{matrix} \right]\]

As we know that it is an imaginary number and its value is \[\sqrt{-1}\]. Therefore, we get \[{{i}^{2}}=-1\].

Hence, we finally get \[{{A}^{2}}\] as \[\left[ \begin{matrix}

{{i}^{2}} & 0 \\

0 & {{i}^{2}} \\

\end{matrix} \right]=\left[ \begin{matrix}

-1 & 0 \\

0 & -1 \\

\end{matrix} \right]\].

Note: Students must note that to perform the matrix multiplication, the number of columns in the first matrix should be equal to the number of rows in the second matrix. Students should also remember that matrix multiplication is only carried out by multiplying rows of the first matrix by columns of the second matrix unlike in determinant. In determinant, multiplication can be carried out by multiplying row to row and column to column as well. Therefore, students must not confuse between multiplication of two matrices or two determinants. Also, take special care in taking the values of the variables a, b, c and d.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

The coordinates of the points A and B are a0 and a0 class 11 maths JEE_Main

Trending doubts

Write an application to the principal requesting five class 10 english CBSE

Tropic of Cancer passes through how many states? Name them.

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE

What is per capita income

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India