
If a flag-staff of 6m height placed on top of a tower throws a shadow of $2\sqrt 3 m$ along the ground, then what is the angle that the sun makes with the ground?
$(a){\text{ 6}}{{\text{0}}^0}$
$(b){\text{ 4}}{{\text{5}}^0}$
$(c){\text{ 3}}{{\text{0}}^0}$
$(d){\text{ 1}}{{\text{5}}^0}$
Answer
623.1k+ views
Hint- By the data provided in the question we can easily form a triangle and implementation of trigonometric ratios to this triangle will help to reach the answer.
Let us take the angle of elevation made by the point B on the ground with the sun as x degree.
Now length of shadow that is AB =$2\sqrt 3 m$, given in question.
The length of tower AC =6m, given in question.
$\operatorname{Tan} \theta = \dfrac{{height}}{{base}}$……………………………….. (1)
Now in $\vartriangle ABC$
Using equation (1) we can say that
$\operatorname{Tan} x = \dfrac{{AC}}{{AB}} = \dfrac{6}{{2\sqrt 3 }} = \dfrac{3}{{\sqrt 3 }}$
Now let’s rationalize the denominator part by multiplying $\sqrt 3 $ in both the numerator and denominator part.
$\tan x = \dfrac{3}{{\sqrt 3 }} \times \dfrac{{\sqrt 3 }}{{\sqrt 3 }} = \dfrac{{3\sqrt 3 }}{3} = \sqrt 3 $
Now
$
\tan x = \sqrt 3 \\
\Rightarrow x = {\tan ^{ - 1}}\left( {\sqrt 3 } \right) = \dfrac{\pi }{3} = {60^0} \\
$
Hence the required angle is 60 degrees.
Note- Whenever we come across this type of question the basic concept that we need to recall is that of trigonometric ratios, example$\operatorname{Tan} \theta = \dfrac{{height}}{{base}}$, similarly all other trigonometric ratios have a default implementation formula. Having a good grasp over them helps to reach the right answer.
Let us take the angle of elevation made by the point B on the ground with the sun as x degree.
Now length of shadow that is AB =$2\sqrt 3 m$, given in question.
The length of tower AC =6m, given in question.
$\operatorname{Tan} \theta = \dfrac{{height}}{{base}}$……………………………….. (1)
Now in $\vartriangle ABC$
Using equation (1) we can say that
$\operatorname{Tan} x = \dfrac{{AC}}{{AB}} = \dfrac{6}{{2\sqrt 3 }} = \dfrac{3}{{\sqrt 3 }}$
Now let’s rationalize the denominator part by multiplying $\sqrt 3 $ in both the numerator and denominator part.
$\tan x = \dfrac{3}{{\sqrt 3 }} \times \dfrac{{\sqrt 3 }}{{\sqrt 3 }} = \dfrac{{3\sqrt 3 }}{3} = \sqrt 3 $
Now
$
\tan x = \sqrt 3 \\
\Rightarrow x = {\tan ^{ - 1}}\left( {\sqrt 3 } \right) = \dfrac{\pi }{3} = {60^0} \\
$
Hence the required angle is 60 degrees.
Note- Whenever we come across this type of question the basic concept that we need to recall is that of trigonometric ratios, example$\operatorname{Tan} \theta = \dfrac{{height}}{{base}}$, similarly all other trigonometric ratios have a default implementation formula. Having a good grasp over them helps to reach the right answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

