Answer
Verified
492.3k+ views
Hint: use the basic definition of G.P. i.e. if three terms (a, b, c) are in G.P., then, relation between (a, b, c) are ${{b}^{2}}=ac.$
We are given that
${{a}^{x}}={{b}^{y}}={{c}^{z}}...........\left( 1 \right)$
Another information given in the question is that a, b, c are G.P. and hence, we know that, if three terms (a, b, c) in G.P., then can write relation between then as;
$\begin{align}
& {{b}^{2}}=ac \\
& Or \\
& b=\sqrt{ac}........................\left( 2 \right) \\
\end{align}$
Now we can substitute value of ‘b’ from equation (2) to equation (1), we get;
$\begin{align}
& {{a}^{x}}={{\left( \sqrt{ac} \right)}^{y}}={{c}^{z}} \\
& or \\
& {{a}^{x}}={{\left( ac \right)}^{\dfrac{y}{2}}}={{c}^{z}}...............\left( 3 \right) \\
\end{align}$
Let us solve the first two terms and second terms individually to get a relation among x, y, z.
Now, from first two terms of equation (3), we get;
${{a}^{x}}={{\left( ac \right)}^{\dfrac{y}{2}}}...........\left( 4 \right)$
As we know property of surds that
${{\left( mn \right)}^{r}}={{m}^{r}}{{n}^{r}}$
Hence, we can simplify equation (4), as
${{a}^{x}}={{a}^{\dfrac{y}{2}}}{{c}^{\dfrac{y}{2}}}$
Transferring ${{a}^{\dfrac{y}{2}}}$ to other sides, we get;
$\dfrac{{{a}^{x}}}{{{a}^{\dfrac{y}{2}}}}={{c}^{\dfrac{y}{2}}}................\left( 5 \right)$
Now, using property of surds as
$\dfrac{{{m}^{r}}}{{{m}^{n}}}={{m}^{r-n}}$
Now, equation (5), becomes
${{a}^{x-\dfrac{y}{2}}}={{c}^{\dfrac{y}{2}}}.................\left( 6 \right)$
Now, taking last two terms of equation (3), we get;
${{\left( ac \right)}^{\dfrac{y}{2}}}={{c}^{z}}$
Now we can simplify the above relation using ${{\left( mn \right)}^{r}}={{m}^{r}}{{n}^{r}}$. Hence, above equation can be written as;
$\begin{align}
& {{\left( ac \right)}^{\dfrac{y}{2}}}={{c}^{z}} \\
& {{a}^{\dfrac{y}{2}}}{{c}^{\dfrac{y}{2}}}={{c}^{z}} \\
\end{align}$
Transferring ${{c}^{\dfrac{y}{2}}}$ to other sides, we get;
${{a}^{\dfrac{y}{2}}}=\dfrac{{{c}^{z}}}{{{c}^{\dfrac{y}{2}}}}$
Now, using property, $\dfrac{{{m}^{r}}}{{{m}^{n}}}={{m}^{r-n}}$, we can rewrite the given equation as;
${{a}^{\dfrac{y}{2}}}={{c}^{z-\dfrac{y}{2}}}..............\left( 7 \right)$
Now we know the property of surds as,
If \[{{a}^{m}}={{b}^{n}}\], we can transfer power to other side as
\[a={{\left( {{b}^{n}} \right)}^{\dfrac{1}{m}}}\text{ or }a={{b}^{\dfrac{n}{m}}}..............\left( 8 \right)\]
Using the above property of equation (8), with the equation (7), we get equation (7) as
$\begin{align}
& a={{c}^{\left( z-\dfrac{y}{2} \right)\dfrac{1}{\left( \dfrac{y}{2} \right)}}} \\
& or \\
& a={{c}^{\left( z-\dfrac{y}{2} \right)\dfrac{2}{y}}}..............\left( 9 \right) \\
\end{align}$
Now putting value of ‘a’ to equation (6) we get;
${{c}^{\left( \left( z-\dfrac{y}{2} \right)\dfrac{2}{y} \right)\left( x-\dfrac{y}{2} \right)}}={{c}^{\dfrac{y}{2}}}..................\left( 10 \right)$
Using the property of surds that if ${{a}^{m}}={{a}^{n}}$ then power should also be equal i.e. m=n.
Therefore, we can write from equation (10),
$\left( z-\dfrac{y}{2} \right)\dfrac{2}{y}\left( x-\dfrac{y}{2} \right)=\dfrac{y}{2}$
On simplifying the above relation, we get
$\begin{align}
& \left( \dfrac{2z-y}{2} \right)\left( \dfrac{2}{y} \right)\left( \dfrac{2x-y}{2} \right)=\dfrac{y}{2} \\
& \left( 2z-y \right)\left( 2x-y \right)={{y}^{2}} \\
\end{align}$
Multiplying (2z – y) and (2x – y), we get
$\begin{align}
& 4xz-2yz-2xy+{{y}^{2}}={{y}^{2}} \\
& 4xz-2yz-2xy=0 \\
\end{align}$
Dividing the whole equation by 2, we get
2xz – yz – xy = 0
Or
xy + yz = 2xz
Dividing, the whole equation by xyz to both sides, we get,
$\begin{align}
& \dfrac{xy}{xyz}+\dfrac{yz}{xyz}=\dfrac{2xz}{xyz} \\
& \dfrac{1}{z}+\dfrac{1}{x}=\dfrac{2}{y} \\
\end{align}$
As we know that if three numbers x, y, z are in HP, then $\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{2}{y}$as written in above equation.
Hence, it is proved that x, y, z are in H.P.
Note: One can go wrong while using the property if \[{{a}^{m}}={{c}^{n}}\] then \[a={{c}^{\dfrac{n}{m}}}\].
One can go wrong while transferring m to other side as
If \[{{a}^{m}}={{c}^{n}}\]then \[a={{c}^{\dfrac{n}{m}}}\text{ or }a={{c}^{mn}}\] which are wrong. Hence, be careful while using the above property of surds.
Another approach for this question would be that can take log to equation as,
${{a}^{x}}={{b}^{y}}={{c}^{z}}$
Taking log and using property as
$\log {{m}^{n}}=n\log m$
$\begin{align}
& \log {{a}^{x}}=\log {{b}^{y}}=\log {{c}^{z}} \\
& x\log a=y\log b=z\log c \\
\end{align}$
We know, ${{b}^{2}}=ac$
Taking log to both sides, we get;
$\begin{align}
& \log {{b}^{2}}=\log ac \\
& 2\log b=\log a+\log c \\
\end{align}$
As, we know log ab = log a + log c
Now, using the two equations
$x\log a=y\log b=z\log c\text{ and }2\log b=\log a+\log c,$ find relation between x, y and z.
We are given that
${{a}^{x}}={{b}^{y}}={{c}^{z}}...........\left( 1 \right)$
Another information given in the question is that a, b, c are G.P. and hence, we know that, if three terms (a, b, c) in G.P., then can write relation between then as;
$\begin{align}
& {{b}^{2}}=ac \\
& Or \\
& b=\sqrt{ac}........................\left( 2 \right) \\
\end{align}$
Now we can substitute value of ‘b’ from equation (2) to equation (1), we get;
$\begin{align}
& {{a}^{x}}={{\left( \sqrt{ac} \right)}^{y}}={{c}^{z}} \\
& or \\
& {{a}^{x}}={{\left( ac \right)}^{\dfrac{y}{2}}}={{c}^{z}}...............\left( 3 \right) \\
\end{align}$
Let us solve the first two terms and second terms individually to get a relation among x, y, z.
Now, from first two terms of equation (3), we get;
${{a}^{x}}={{\left( ac \right)}^{\dfrac{y}{2}}}...........\left( 4 \right)$
As we know property of surds that
${{\left( mn \right)}^{r}}={{m}^{r}}{{n}^{r}}$
Hence, we can simplify equation (4), as
${{a}^{x}}={{a}^{\dfrac{y}{2}}}{{c}^{\dfrac{y}{2}}}$
Transferring ${{a}^{\dfrac{y}{2}}}$ to other sides, we get;
$\dfrac{{{a}^{x}}}{{{a}^{\dfrac{y}{2}}}}={{c}^{\dfrac{y}{2}}}................\left( 5 \right)$
Now, using property of surds as
$\dfrac{{{m}^{r}}}{{{m}^{n}}}={{m}^{r-n}}$
Now, equation (5), becomes
${{a}^{x-\dfrac{y}{2}}}={{c}^{\dfrac{y}{2}}}.................\left( 6 \right)$
Now, taking last two terms of equation (3), we get;
${{\left( ac \right)}^{\dfrac{y}{2}}}={{c}^{z}}$
Now we can simplify the above relation using ${{\left( mn \right)}^{r}}={{m}^{r}}{{n}^{r}}$. Hence, above equation can be written as;
$\begin{align}
& {{\left( ac \right)}^{\dfrac{y}{2}}}={{c}^{z}} \\
& {{a}^{\dfrac{y}{2}}}{{c}^{\dfrac{y}{2}}}={{c}^{z}} \\
\end{align}$
Transferring ${{c}^{\dfrac{y}{2}}}$ to other sides, we get;
${{a}^{\dfrac{y}{2}}}=\dfrac{{{c}^{z}}}{{{c}^{\dfrac{y}{2}}}}$
Now, using property, $\dfrac{{{m}^{r}}}{{{m}^{n}}}={{m}^{r-n}}$, we can rewrite the given equation as;
${{a}^{\dfrac{y}{2}}}={{c}^{z-\dfrac{y}{2}}}..............\left( 7 \right)$
Now we know the property of surds as,
If \[{{a}^{m}}={{b}^{n}}\], we can transfer power to other side as
\[a={{\left( {{b}^{n}} \right)}^{\dfrac{1}{m}}}\text{ or }a={{b}^{\dfrac{n}{m}}}..............\left( 8 \right)\]
Using the above property of equation (8), with the equation (7), we get equation (7) as
$\begin{align}
& a={{c}^{\left( z-\dfrac{y}{2} \right)\dfrac{1}{\left( \dfrac{y}{2} \right)}}} \\
& or \\
& a={{c}^{\left( z-\dfrac{y}{2} \right)\dfrac{2}{y}}}..............\left( 9 \right) \\
\end{align}$
Now putting value of ‘a’ to equation (6) we get;
${{c}^{\left( \left( z-\dfrac{y}{2} \right)\dfrac{2}{y} \right)\left( x-\dfrac{y}{2} \right)}}={{c}^{\dfrac{y}{2}}}..................\left( 10 \right)$
Using the property of surds that if ${{a}^{m}}={{a}^{n}}$ then power should also be equal i.e. m=n.
Therefore, we can write from equation (10),
$\left( z-\dfrac{y}{2} \right)\dfrac{2}{y}\left( x-\dfrac{y}{2} \right)=\dfrac{y}{2}$
On simplifying the above relation, we get
$\begin{align}
& \left( \dfrac{2z-y}{2} \right)\left( \dfrac{2}{y} \right)\left( \dfrac{2x-y}{2} \right)=\dfrac{y}{2} \\
& \left( 2z-y \right)\left( 2x-y \right)={{y}^{2}} \\
\end{align}$
Multiplying (2z – y) and (2x – y), we get
$\begin{align}
& 4xz-2yz-2xy+{{y}^{2}}={{y}^{2}} \\
& 4xz-2yz-2xy=0 \\
\end{align}$
Dividing the whole equation by 2, we get
2xz – yz – xy = 0
Or
xy + yz = 2xz
Dividing, the whole equation by xyz to both sides, we get,
$\begin{align}
& \dfrac{xy}{xyz}+\dfrac{yz}{xyz}=\dfrac{2xz}{xyz} \\
& \dfrac{1}{z}+\dfrac{1}{x}=\dfrac{2}{y} \\
\end{align}$
As we know that if three numbers x, y, z are in HP, then $\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{2}{y}$as written in above equation.
Hence, it is proved that x, y, z are in H.P.
Note: One can go wrong while using the property if \[{{a}^{m}}={{c}^{n}}\] then \[a={{c}^{\dfrac{n}{m}}}\].
One can go wrong while transferring m to other side as
If \[{{a}^{m}}={{c}^{n}}\]then \[a={{c}^{\dfrac{n}{m}}}\text{ or }a={{c}^{mn}}\] which are wrong. Hence, be careful while using the above property of surds.
Another approach for this question would be that can take log to equation as,
${{a}^{x}}={{b}^{y}}={{c}^{z}}$
Taking log and using property as
$\log {{m}^{n}}=n\log m$
$\begin{align}
& \log {{a}^{x}}=\log {{b}^{y}}=\log {{c}^{z}} \\
& x\log a=y\log b=z\log c \\
\end{align}$
We know, ${{b}^{2}}=ac$
Taking log to both sides, we get;
$\begin{align}
& \log {{b}^{2}}=\log ac \\
& 2\log b=\log a+\log c \\
\end{align}$
As, we know log ab = log a + log c
Now, using the two equations
$x\log a=y\log b=z\log c\text{ and }2\log b=\log a+\log c,$ find relation between x, y and z.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE