Answer
Verified
429.3k+ views
Hint: Start by rearranging the equation given in the question such that LHS consists of the terms consisting x and all the other terms are in the RHS of the equation. Once, you have simplified the equation, figure out the constraints, and report the answer.
Complete step-by-step answer:
Let us start the solution to the above question by solving the equation given in the question.
$3x-5+a=bx+1$
Now, we will take all the terms consisting of x to one side of the equation, and all the other terms to the other side of the equation. On doing so, we get
$3x-bx=1+5-a$
Now, we will take x common from the terms in the LHS of the equation. On doing so, we get
$x\left( 3-b \right)=6-a$
Now, if we observe, we will find that it is a=6 and b=3, then RHS=LHS=0 for any value of x, so the equation will have infinite solutions in this case. So, we can see that if $b=3$, then x gets diminished and we will not be able to determine the value of “x” and “a” can take as many possible values from the set of real numbers. So, for $b\ne 3$, $3x-5+a=bx+1$ have a unique solution.
Hence, The answer to the above question is the option (d).
Note: The one mistake that a student makes very often is that they solve the equation completely giving $x=\dfrac{6-a}{3-b}$, looking at which we cannot figure out any constraint on a and b and hence reporting the answer as an option (a), which is wrong.
Complete step-by-step answer:
Let us start the solution to the above question by solving the equation given in the question.
$3x-5+a=bx+1$
Now, we will take all the terms consisting of x to one side of the equation, and all the other terms to the other side of the equation. On doing so, we get
$3x-bx=1+5-a$
Now, we will take x common from the terms in the LHS of the equation. On doing so, we get
$x\left( 3-b \right)=6-a$
Now, if we observe, we will find that it is a=6 and b=3, then RHS=LHS=0 for any value of x, so the equation will have infinite solutions in this case. So, we can see that if $b=3$, then x gets diminished and we will not be able to determine the value of “x” and “a” can take as many possible values from the set of real numbers. So, for $b\ne 3$, $3x-5+a=bx+1$ have a unique solution.
Hence, The answer to the above question is the option (d).
Note: The one mistake that a student makes very often is that they solve the equation completely giving $x=\dfrac{6-a}{3-b}$, looking at which we cannot figure out any constraint on a and b and hence reporting the answer as an option (a), which is wrong.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
10 examples of evaporation in daily life with explanations