If $a + b + c = abc$ , show that $\dfrac{{a\left( {{b^2}{c^2} - 1} \right)}}{{bc + 1}} + \dfrac{{b\left( {{c^2}{a^2} - 1} \right)}}{{ca + 1}} + \dfrac{{c\left( {{a^2}{b^2} - 1} \right)}}{{ab + 1}} = 2abc$.
Last updated date: 19th Mar 2023
•
Total views: 309k
•
Views today: 6.87k
Answer
309k+ views
Hint: Simplify the expression using algebraic identity ${x^2} - {y^2} = \left( {x - y} \right)\left( {x + y} \right)$.
Given, ${\text{ }}a + b + c = abc{\text{ }} \to {\text{(1)}}$
To prove- $\dfrac{{a\left( {{b^2}{c^2} - 1} \right)}}{{bc + 1}} + \dfrac{{b\left( {{c^2}{a^2} - 1} \right)}}{{ca + 1}} + \dfrac{{c\left( {{a^2}{b^2} - 1} \right)}}{{ab + 1}} = 2abc$
Now, let us take the LHS of the equation that we need to prove and simply it.
i.e., \[{\text{LHS}} = \dfrac{{a\left( {{b^2}{c^2} - 1} \right)}}{{bc + 1}} + \dfrac{{b\left( {{c^2}{a^2} - 1} \right)}}{{ca + 1}} + \dfrac{{c\left( {{a^2}{b^2} - 1} \right)}}{{ab + 1}} = \dfrac{{a\left[ {{{\left( {bc} \right)}^2} - {1^2}} \right]}}{{bc + 1}} + \dfrac{{b\left[ {{{\left( {ca} \right)}^2} - {1^2}} \right]}}{{ca + 1}} + \dfrac{{c\left[ {{{\left( {ab} \right)}^2} - {1^2}} \right]}}{{ab + 1}}\]
Using the formula, ${x^2} - {y^2} = \left( {x - y} \right)\left( {x + y} \right)$
$
\Rightarrow {\text{LHS}} = \dfrac{{a\left( {bc - 1} \right)\left( {bc + 1} \right)}}{{bc + 1}} + \dfrac{{b\left( {ca - 1} \right)\left( {ca + 1} \right)}}{{ca + 1}} + \dfrac{{c\left( {ab - 1} \right)\left( {ab + 1} \right)}}{{ab + 1}} \\
\Rightarrow {\text{LHS}} = \dfrac{{a\left( {bc - 1} \right)}}{1} + \dfrac{{b\left( {ca - 1} \right)}}{1} + \dfrac{{c\left( {ab - 1} \right)}}{1} \\
\Rightarrow {\text{LHS}} = abc - a + abc - b + abc - c = 3abc - \left( {a + b + c} \right) \\
$
Using equation (1), we get
$ \Rightarrow {\text{LHS}} = 3abc - abc = 2abc = {\text{RHS}}$
Clearly, the above equation shows that the LHS taken is equal to the RHS of the equation which needs to be proved.
Hence, $\dfrac{{a\left( {{b^2}{c^2} - 1} \right)}}{{bc + 1}} + \dfrac{{b\left( {{c^2}{a^2} - 1} \right)}}{{ca + 1}} + \dfrac{{c\left( {{a^2}{b^2} - 1} \right)}}{{ab + 1}} = 2abc$
Note- In these types of problems, the LHS of the equation which needs to be proved is simplified using the given data in such a way that it ends up becoming equal to the RHS of the equation.
Given, ${\text{ }}a + b + c = abc{\text{ }} \to {\text{(1)}}$
To prove- $\dfrac{{a\left( {{b^2}{c^2} - 1} \right)}}{{bc + 1}} + \dfrac{{b\left( {{c^2}{a^2} - 1} \right)}}{{ca + 1}} + \dfrac{{c\left( {{a^2}{b^2} - 1} \right)}}{{ab + 1}} = 2abc$
Now, let us take the LHS of the equation that we need to prove and simply it.
i.e., \[{\text{LHS}} = \dfrac{{a\left( {{b^2}{c^2} - 1} \right)}}{{bc + 1}} + \dfrac{{b\left( {{c^2}{a^2} - 1} \right)}}{{ca + 1}} + \dfrac{{c\left( {{a^2}{b^2} - 1} \right)}}{{ab + 1}} = \dfrac{{a\left[ {{{\left( {bc} \right)}^2} - {1^2}} \right]}}{{bc + 1}} + \dfrac{{b\left[ {{{\left( {ca} \right)}^2} - {1^2}} \right]}}{{ca + 1}} + \dfrac{{c\left[ {{{\left( {ab} \right)}^2} - {1^2}} \right]}}{{ab + 1}}\]
Using the formula, ${x^2} - {y^2} = \left( {x - y} \right)\left( {x + y} \right)$
$
\Rightarrow {\text{LHS}} = \dfrac{{a\left( {bc - 1} \right)\left( {bc + 1} \right)}}{{bc + 1}} + \dfrac{{b\left( {ca - 1} \right)\left( {ca + 1} \right)}}{{ca + 1}} + \dfrac{{c\left( {ab - 1} \right)\left( {ab + 1} \right)}}{{ab + 1}} \\
\Rightarrow {\text{LHS}} = \dfrac{{a\left( {bc - 1} \right)}}{1} + \dfrac{{b\left( {ca - 1} \right)}}{1} + \dfrac{{c\left( {ab - 1} \right)}}{1} \\
\Rightarrow {\text{LHS}} = abc - a + abc - b + abc - c = 3abc - \left( {a + b + c} \right) \\
$
Using equation (1), we get
$ \Rightarrow {\text{LHS}} = 3abc - abc = 2abc = {\text{RHS}}$
Clearly, the above equation shows that the LHS taken is equal to the RHS of the equation which needs to be proved.
Hence, $\dfrac{{a\left( {{b^2}{c^2} - 1} \right)}}{{bc + 1}} + \dfrac{{b\left( {{c^2}{a^2} - 1} \right)}}{{ca + 1}} + \dfrac{{c\left( {{a^2}{b^2} - 1} \right)}}{{ab + 1}} = 2abc$
Note- In these types of problems, the LHS of the equation which needs to be proved is simplified using the given data in such a way that it ends up becoming equal to the RHS of the equation.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India
