
If $A+B+C=\pi $ Prove that $\sin 2A+\sin 2B+\sin 2C=4\sin A\sin B\sin C$
Answer
612.6k+ views
Hint: In this question, apply (C, D) formula on the first two terms and apply double angle formula on the third term. Also apply suitable transformation formula upon the terms inside the bracket.
Complete step-by-step answer:
We write here the steps, which we follow in general-
1. Given $A+B+C=\pi \Rightarrow A+B=\pi -C$
2. Apply (C, D) formula on the first two terms and apply double angle formula on the third term.
3. Replace $A+B$ by $\pi -C$ inside the bracket.
4. Apply suitable transformation formula upon the terms inside the bracket.
Let us consider the L. H. S.
L. H. S. $=\sin 2A+\sin 2B+\sin 2C$
L. H. S. $=\left( \sin 2A+\sin 2B \right)+\sin 2C$
Applying the sum to product formula $\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$ , we get
L. H. S. $=\left[ 2\sin (A+B)\cos (A-B) \right]+2\sin C\cos C.............(1)$
It is given that, $A+B+C=\pi \Rightarrow A+B=\pi -C$
So, the expression $\sin (A+B)=\sin (\pi -C)=\sin C$
Now put this expression in the equation (1), we get
L. H. S. $=\left[ 2\sin C\cos (A-B) \right]+2\sin C\cos C$
Rearranging the terms, we get
L. H. S. $=2\sin C\left[ \cos (A-B)+\cos C \right].......................(2)$
It is also given that, $C=\pi -(A+B)$
So, the expression $\cos C=\cos \left[ \pi -(A+B) \right]=-\cos (A+B)$
Now put this expression in the equation (2), we get
L. H. S. $=2\sin C\left[ \cos (A-B)-\cos (A+B) \right]$
Applying the formula$\cos (A+B)-\cos (A+B)=2\sin A\sin B$, we get
L. H. S. $=2\sin C\left[ 2\sin A\sin B \right]$
Rearranging the terms, we get
L. H. S. $=4\sin A\sin B\sin C$
L. H. S. = R. H. S.
Therefore, we have
$\sin 2A+\sin 2B+\sin 2C=4\sin A\sin B\sin C$
This is the desired result.
Note: This identity holds for all values of the angles which satisfy the given conditions among them and hence they are called conditional trigonometric identity. To establish such identity we require the properties of supplementary and complementary angles.
Complete step-by-step answer:
We write here the steps, which we follow in general-
1. Given $A+B+C=\pi \Rightarrow A+B=\pi -C$
2. Apply (C, D) formula on the first two terms and apply double angle formula on the third term.
3. Replace $A+B$ by $\pi -C$ inside the bracket.
4. Apply suitable transformation formula upon the terms inside the bracket.
Let us consider the L. H. S.
L. H. S. $=\sin 2A+\sin 2B+\sin 2C$
L. H. S. $=\left( \sin 2A+\sin 2B \right)+\sin 2C$
Applying the sum to product formula $\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$ , we get
L. H. S. $=\left[ 2\sin (A+B)\cos (A-B) \right]+2\sin C\cos C.............(1)$
It is given that, $A+B+C=\pi \Rightarrow A+B=\pi -C$
So, the expression $\sin (A+B)=\sin (\pi -C)=\sin C$
Now put this expression in the equation (1), we get
L. H. S. $=\left[ 2\sin C\cos (A-B) \right]+2\sin C\cos C$
Rearranging the terms, we get
L. H. S. $=2\sin C\left[ \cos (A-B)+\cos C \right].......................(2)$
It is also given that, $C=\pi -(A+B)$
So, the expression $\cos C=\cos \left[ \pi -(A+B) \right]=-\cos (A+B)$
Now put this expression in the equation (2), we get
L. H. S. $=2\sin C\left[ \cos (A-B)-\cos (A+B) \right]$
Applying the formula$\cos (A+B)-\cos (A+B)=2\sin A\sin B$, we get
L. H. S. $=2\sin C\left[ 2\sin A\sin B \right]$
Rearranging the terms, we get
L. H. S. $=4\sin A\sin B\sin C$
L. H. S. = R. H. S.
Therefore, we have
$\sin 2A+\sin 2B+\sin 2C=4\sin A\sin B\sin C$
This is the desired result.
Note: This identity holds for all values of the angles which satisfy the given conditions among them and hence they are called conditional trigonometric identity. To establish such identity we require the properties of supplementary and complementary angles.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

