
If $A+B+C=\pi $ Prove that $\sin 2A+\sin 2B+\sin 2C=4\sin A\sin B\sin C$
Answer
598.8k+ views
Hint: In this question, apply (C, D) formula on the first two terms and apply double angle formula on the third term. Also apply suitable transformation formula upon the terms inside the bracket.
Complete step-by-step answer:
We write here the steps, which we follow in general-
1. Given $A+B+C=\pi \Rightarrow A+B=\pi -C$
2. Apply (C, D) formula on the first two terms and apply double angle formula on the third term.
3. Replace $A+B$ by $\pi -C$ inside the bracket.
4. Apply suitable transformation formula upon the terms inside the bracket.
Let us consider the L. H. S.
L. H. S. $=\sin 2A+\sin 2B+\sin 2C$
L. H. S. $=\left( \sin 2A+\sin 2B \right)+\sin 2C$
Applying the sum to product formula $\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$ , we get
L. H. S. $=\left[ 2\sin (A+B)\cos (A-B) \right]+2\sin C\cos C.............(1)$
It is given that, $A+B+C=\pi \Rightarrow A+B=\pi -C$
So, the expression $\sin (A+B)=\sin (\pi -C)=\sin C$
Now put this expression in the equation (1), we get
L. H. S. $=\left[ 2\sin C\cos (A-B) \right]+2\sin C\cos C$
Rearranging the terms, we get
L. H. S. $=2\sin C\left[ \cos (A-B)+\cos C \right].......................(2)$
It is also given that, $C=\pi -(A+B)$
So, the expression $\cos C=\cos \left[ \pi -(A+B) \right]=-\cos (A+B)$
Now put this expression in the equation (2), we get
L. H. S. $=2\sin C\left[ \cos (A-B)-\cos (A+B) \right]$
Applying the formula$\cos (A+B)-\cos (A+B)=2\sin A\sin B$, we get
L. H. S. $=2\sin C\left[ 2\sin A\sin B \right]$
Rearranging the terms, we get
L. H. S. $=4\sin A\sin B\sin C$
L. H. S. = R. H. S.
Therefore, we have
$\sin 2A+\sin 2B+\sin 2C=4\sin A\sin B\sin C$
This is the desired result.
Note: This identity holds for all values of the angles which satisfy the given conditions among them and hence they are called conditional trigonometric identity. To establish such identity we require the properties of supplementary and complementary angles.
Complete step-by-step answer:
We write here the steps, which we follow in general-
1. Given $A+B+C=\pi \Rightarrow A+B=\pi -C$
2. Apply (C, D) formula on the first two terms and apply double angle formula on the third term.
3. Replace $A+B$ by $\pi -C$ inside the bracket.
4. Apply suitable transformation formula upon the terms inside the bracket.
Let us consider the L. H. S.
L. H. S. $=\sin 2A+\sin 2B+\sin 2C$
L. H. S. $=\left( \sin 2A+\sin 2B \right)+\sin 2C$
Applying the sum to product formula $\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)$ , we get
L. H. S. $=\left[ 2\sin (A+B)\cos (A-B) \right]+2\sin C\cos C.............(1)$
It is given that, $A+B+C=\pi \Rightarrow A+B=\pi -C$
So, the expression $\sin (A+B)=\sin (\pi -C)=\sin C$
Now put this expression in the equation (1), we get
L. H. S. $=\left[ 2\sin C\cos (A-B) \right]+2\sin C\cos C$
Rearranging the terms, we get
L. H. S. $=2\sin C\left[ \cos (A-B)+\cos C \right].......................(2)$
It is also given that, $C=\pi -(A+B)$
So, the expression $\cos C=\cos \left[ \pi -(A+B) \right]=-\cos (A+B)$
Now put this expression in the equation (2), we get
L. H. S. $=2\sin C\left[ \cos (A-B)-\cos (A+B) \right]$
Applying the formula$\cos (A+B)-\cos (A+B)=2\sin A\sin B$, we get
L. H. S. $=2\sin C\left[ 2\sin A\sin B \right]$
Rearranging the terms, we get
L. H. S. $=4\sin A\sin B\sin C$
L. H. S. = R. H. S.
Therefore, we have
$\sin 2A+\sin 2B+\sin 2C=4\sin A\sin B\sin C$
This is the desired result.
Note: This identity holds for all values of the angles which satisfy the given conditions among them and hence they are called conditional trigonometric identity. To establish such identity we require the properties of supplementary and complementary angles.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

