
If \[A+B+C+D=2\pi \], show that \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
Answer
608.1k+ views
Hint: Rearrange the terms of the equation \[A+B+C+D=2\pi \] and use the properties of cosine and sine functions to prove the given expression. Also use the formula for the sum of two sine and cosine functions to simplify the expression.
Complete step-by-step answer:
We know that \[A+B+C+D=2\pi \]. We have to prove \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
We will use a formula for the sum of two cosine or sine functions to get the desired expression.
We will simplify the left side of the expression \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
We know that \[\cos x-\cos y=2\sin \left( \dfrac{x+y}{2} \right)\sin \left( \dfrac{y-x}{2} \right)\].
Thus, we have \[\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)\].
Similarly, we have \[\cos C-\cos D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right)\].
Adding the two equations, we have \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)+2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right).....\left( 1 \right)\].
We can write \[C+D=2\pi -(A+B)\] by rearranging the terms of the expression \[A+B+C+D=2\pi \].
Thus, we have \[\dfrac{C+D}{2}=\pi -\dfrac{(A+B)}{2}\].
So, we have \[\sin \left( \dfrac{C+D}{2} \right)=\sin \left( \pi -\dfrac{(A+B)}{2} \right)\].
As we know, \[\sin \left( \pi -\theta \right)=\sin \theta \], we have \[\sin \left( \pi -\dfrac{(A+B)}{2} \right)=\sin \left( \dfrac{A+B}{2} \right)\].
Thus, we have \[\sin \left( \dfrac{C+D}{2} \right)=\sin \left( \pi -\dfrac{(A+B)}{2} \right)=\sin \left( \dfrac{A+B}{2} \right).....\left( 2 \right)\].
Substituting equation \[\left( 2 \right)\] in equation \[\left( 1 \right)\], we have \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)+2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{D-C}{2} \right)\].
We can rewrite this equation as \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\left( \sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right) \right).....\left( 3 \right)\].
We know that \[\sin x+\sin y=2\sin \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)\].
Substituting \[x=\dfrac{B-A}{2},y=\dfrac{D-C}{2}\] in the above equation, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{\dfrac{B-A}{2}+\dfrac{D-C}{2}}{2} \right)\cos \left( \dfrac{\dfrac{B-A}{2}-\dfrac{D-C}{2}}{2} \right)\].
Simplifying the above expression, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{B+D-\left( A+C \right)}{4} \right)\cos \left( \dfrac{B+C-\left( A+D \right)}{4} \right)\].
We can rewrite \[B+D\] as \[B+D=2\pi -(A+C)\] and \[B+C\] as \[B+C=2\pi -\left( A+D \right)\].
Thus, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{2\pi -2\left( A+C \right)}{4} \right)\cos \left( \dfrac{2\pi -2\left( A+D \right)}{4} \right)\].
We can rewrite the above equation as \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{\pi }{2}-\dfrac{A+C}{2} \right)\cos \left( \dfrac{\pi }{2}-\dfrac{A+D}{2} \right)\].
We know that \[\sin \left( \dfrac{\pi }{2}-x \right)=\cos x,\cos \left( \dfrac{\pi }{2}-x \right)=\sin x\].
Thus, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\cos \left( \dfrac{A+C}{2} \right)\sin \left( \dfrac{A+D}{2} \right).....\left( 4 \right)\].
Substituting equation \[\left( 4 \right)\] in equation \[\left( 3 \right)\], we have \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\left( 2\cos \left( \dfrac{A+C}{2} \right)\sin \left( \dfrac{A+D}{2} \right) \right)\].
Simplifying the above expression, we have \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
Hence, we have proved that if \[A+B+C+D=2\pi \] holds, we have \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius \[1\]). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Complete step-by-step answer:
We know that \[A+B+C+D=2\pi \]. We have to prove \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
We will use a formula for the sum of two cosine or sine functions to get the desired expression.
We will simplify the left side of the expression \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
We know that \[\cos x-\cos y=2\sin \left( \dfrac{x+y}{2} \right)\sin \left( \dfrac{y-x}{2} \right)\].
Thus, we have \[\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)\].
Similarly, we have \[\cos C-\cos D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right)\].
Adding the two equations, we have \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)+2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right).....\left( 1 \right)\].
We can write \[C+D=2\pi -(A+B)\] by rearranging the terms of the expression \[A+B+C+D=2\pi \].
Thus, we have \[\dfrac{C+D}{2}=\pi -\dfrac{(A+B)}{2}\].
So, we have \[\sin \left( \dfrac{C+D}{2} \right)=\sin \left( \pi -\dfrac{(A+B)}{2} \right)\].
As we know, \[\sin \left( \pi -\theta \right)=\sin \theta \], we have \[\sin \left( \pi -\dfrac{(A+B)}{2} \right)=\sin \left( \dfrac{A+B}{2} \right)\].
Thus, we have \[\sin \left( \dfrac{C+D}{2} \right)=\sin \left( \pi -\dfrac{(A+B)}{2} \right)=\sin \left( \dfrac{A+B}{2} \right).....\left( 2 \right)\].
Substituting equation \[\left( 2 \right)\] in equation \[\left( 1 \right)\], we have \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)+2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{D-C}{2} \right)\].
We can rewrite this equation as \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\left( \sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right) \right).....\left( 3 \right)\].
We know that \[\sin x+\sin y=2\sin \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)\].
Substituting \[x=\dfrac{B-A}{2},y=\dfrac{D-C}{2}\] in the above equation, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{\dfrac{B-A}{2}+\dfrac{D-C}{2}}{2} \right)\cos \left( \dfrac{\dfrac{B-A}{2}-\dfrac{D-C}{2}}{2} \right)\].
Simplifying the above expression, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{B+D-\left( A+C \right)}{4} \right)\cos \left( \dfrac{B+C-\left( A+D \right)}{4} \right)\].
We can rewrite \[B+D\] as \[B+D=2\pi -(A+C)\] and \[B+C\] as \[B+C=2\pi -\left( A+D \right)\].
Thus, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{2\pi -2\left( A+C \right)}{4} \right)\cos \left( \dfrac{2\pi -2\left( A+D \right)}{4} \right)\].
We can rewrite the above equation as \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{\pi }{2}-\dfrac{A+C}{2} \right)\cos \left( \dfrac{\pi }{2}-\dfrac{A+D}{2} \right)\].
We know that \[\sin \left( \dfrac{\pi }{2}-x \right)=\cos x,\cos \left( \dfrac{\pi }{2}-x \right)=\sin x\].
Thus, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\cos \left( \dfrac{A+C}{2} \right)\sin \left( \dfrac{A+D}{2} \right).....\left( 4 \right)\].
Substituting equation \[\left( 4 \right)\] in equation \[\left( 3 \right)\], we have \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\left( 2\cos \left( \dfrac{A+C}{2} \right)\sin \left( \dfrac{A+D}{2} \right) \right)\].
Simplifying the above expression, we have \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
Hence, we have proved that if \[A+B+C+D=2\pi \] holds, we have \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius \[1\]). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

