If \[A+B+C+D=2\pi \], show that \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
Last updated date: 20th Mar 2023
•
Total views: 305.4k
•
Views today: 2.86k
Answer
305.4k+ views
Hint: Rearrange the terms of the equation \[A+B+C+D=2\pi \] and use the properties of cosine and sine functions to prove the given expression. Also use the formula for the sum of two sine and cosine functions to simplify the expression.
Complete step-by-step answer:
We know that \[A+B+C+D=2\pi \]. We have to prove \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
We will use a formula for the sum of two cosine or sine functions to get the desired expression.
We will simplify the left side of the expression \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
We know that \[\cos x-\cos y=2\sin \left( \dfrac{x+y}{2} \right)\sin \left( \dfrac{y-x}{2} \right)\].
Thus, we have \[\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)\].
Similarly, we have \[\cos C-\cos D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right)\].
Adding the two equations, we have \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)+2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right).....\left( 1 \right)\].
We can write \[C+D=2\pi -(A+B)\] by rearranging the terms of the expression \[A+B+C+D=2\pi \].
Thus, we have \[\dfrac{C+D}{2}=\pi -\dfrac{(A+B)}{2}\].
So, we have \[\sin \left( \dfrac{C+D}{2} \right)=\sin \left( \pi -\dfrac{(A+B)}{2} \right)\].
As we know, \[\sin \left( \pi -\theta \right)=\sin \theta \], we have \[\sin \left( \pi -\dfrac{(A+B)}{2} \right)=\sin \left( \dfrac{A+B}{2} \right)\].
Thus, we have \[\sin \left( \dfrac{C+D}{2} \right)=\sin \left( \pi -\dfrac{(A+B)}{2} \right)=\sin \left( \dfrac{A+B}{2} \right).....\left( 2 \right)\].
Substituting equation \[\left( 2 \right)\] in equation \[\left( 1 \right)\], we have \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)+2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{D-C}{2} \right)\].
We can rewrite this equation as \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\left( \sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right) \right).....\left( 3 \right)\].
We know that \[\sin x+\sin y=2\sin \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)\].
Substituting \[x=\dfrac{B-A}{2},y=\dfrac{D-C}{2}\] in the above equation, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{\dfrac{B-A}{2}+\dfrac{D-C}{2}}{2} \right)\cos \left( \dfrac{\dfrac{B-A}{2}-\dfrac{D-C}{2}}{2} \right)\].
Simplifying the above expression, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{B+D-\left( A+C \right)}{4} \right)\cos \left( \dfrac{B+C-\left( A+D \right)}{4} \right)\].
We can rewrite \[B+D\] as \[B+D=2\pi -(A+C)\] and \[B+C\] as \[B+C=2\pi -\left( A+D \right)\].
Thus, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{2\pi -2\left( A+C \right)}{4} \right)\cos \left( \dfrac{2\pi -2\left( A+D \right)}{4} \right)\].
We can rewrite the above equation as \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{\pi }{2}-\dfrac{A+C}{2} \right)\cos \left( \dfrac{\pi }{2}-\dfrac{A+D}{2} \right)\].
We know that \[\sin \left( \dfrac{\pi }{2}-x \right)=\cos x,\cos \left( \dfrac{\pi }{2}-x \right)=\sin x\].
Thus, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\cos \left( \dfrac{A+C}{2} \right)\sin \left( \dfrac{A+D}{2} \right).....\left( 4 \right)\].
Substituting equation \[\left( 4 \right)\] in equation \[\left( 3 \right)\], we have \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\left( 2\cos \left( \dfrac{A+C}{2} \right)\sin \left( \dfrac{A+D}{2} \right) \right)\].
Simplifying the above expression, we have \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
Hence, we have proved that if \[A+B+C+D=2\pi \] holds, we have \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius \[1\]). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Complete step-by-step answer:
We know that \[A+B+C+D=2\pi \]. We have to prove \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
We will use a formula for the sum of two cosine or sine functions to get the desired expression.
We will simplify the left side of the expression \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
We know that \[\cos x-\cos y=2\sin \left( \dfrac{x+y}{2} \right)\sin \left( \dfrac{y-x}{2} \right)\].
Thus, we have \[\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)\].
Similarly, we have \[\cos C-\cos D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right)\].
Adding the two equations, we have \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)+2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right).....\left( 1 \right)\].
We can write \[C+D=2\pi -(A+B)\] by rearranging the terms of the expression \[A+B+C+D=2\pi \].
Thus, we have \[\dfrac{C+D}{2}=\pi -\dfrac{(A+B)}{2}\].
So, we have \[\sin \left( \dfrac{C+D}{2} \right)=\sin \left( \pi -\dfrac{(A+B)}{2} \right)\].
As we know, \[\sin \left( \pi -\theta \right)=\sin \theta \], we have \[\sin \left( \pi -\dfrac{(A+B)}{2} \right)=\sin \left( \dfrac{A+B}{2} \right)\].
Thus, we have \[\sin \left( \dfrac{C+D}{2} \right)=\sin \left( \pi -\dfrac{(A+B)}{2} \right)=\sin \left( \dfrac{A+B}{2} \right).....\left( 2 \right)\].
Substituting equation \[\left( 2 \right)\] in equation \[\left( 1 \right)\], we have \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)+2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{D-C}{2} \right)\].
We can rewrite this equation as \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\left( \sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right) \right).....\left( 3 \right)\].
We know that \[\sin x+\sin y=2\sin \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)\].
Substituting \[x=\dfrac{B-A}{2},y=\dfrac{D-C}{2}\] in the above equation, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{\dfrac{B-A}{2}+\dfrac{D-C}{2}}{2} \right)\cos \left( \dfrac{\dfrac{B-A}{2}-\dfrac{D-C}{2}}{2} \right)\].
Simplifying the above expression, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{B+D-\left( A+C \right)}{4} \right)\cos \left( \dfrac{B+C-\left( A+D \right)}{4} \right)\].
We can rewrite \[B+D\] as \[B+D=2\pi -(A+C)\] and \[B+C\] as \[B+C=2\pi -\left( A+D \right)\].
Thus, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{2\pi -2\left( A+C \right)}{4} \right)\cos \left( \dfrac{2\pi -2\left( A+D \right)}{4} \right)\].
We can rewrite the above equation as \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{\pi }{2}-\dfrac{A+C}{2} \right)\cos \left( \dfrac{\pi }{2}-\dfrac{A+D}{2} \right)\].
We know that \[\sin \left( \dfrac{\pi }{2}-x \right)=\cos x,\cos \left( \dfrac{\pi }{2}-x \right)=\sin x\].
Thus, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\cos \left( \dfrac{A+C}{2} \right)\sin \left( \dfrac{A+D}{2} \right).....\left( 4 \right)\].
Substituting equation \[\left( 4 \right)\] in equation \[\left( 3 \right)\], we have \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\left( 2\cos \left( \dfrac{A+C}{2} \right)\sin \left( \dfrac{A+D}{2} \right) \right)\].
Simplifying the above expression, we have \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
Hence, we have proved that if \[A+B+C+D=2\pi \] holds, we have \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius \[1\]). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
