
If \[A+B+C+D=2\pi \], show that \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
Answer
601.5k+ views
Hint: Rearrange the terms of the equation \[A+B+C+D=2\pi \] and use the properties of cosine and sine functions to prove the given expression. Also use the formula for the sum of two sine and cosine functions to simplify the expression.
Complete step-by-step answer:
We know that \[A+B+C+D=2\pi \]. We have to prove \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
We will use a formula for the sum of two cosine or sine functions to get the desired expression.
We will simplify the left side of the expression \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
We know that \[\cos x-\cos y=2\sin \left( \dfrac{x+y}{2} \right)\sin \left( \dfrac{y-x}{2} \right)\].
Thus, we have \[\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)\].
Similarly, we have \[\cos C-\cos D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right)\].
Adding the two equations, we have \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)+2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right).....\left( 1 \right)\].
We can write \[C+D=2\pi -(A+B)\] by rearranging the terms of the expression \[A+B+C+D=2\pi \].
Thus, we have \[\dfrac{C+D}{2}=\pi -\dfrac{(A+B)}{2}\].
So, we have \[\sin \left( \dfrac{C+D}{2} \right)=\sin \left( \pi -\dfrac{(A+B)}{2} \right)\].
As we know, \[\sin \left( \pi -\theta \right)=\sin \theta \], we have \[\sin \left( \pi -\dfrac{(A+B)}{2} \right)=\sin \left( \dfrac{A+B}{2} \right)\].
Thus, we have \[\sin \left( \dfrac{C+D}{2} \right)=\sin \left( \pi -\dfrac{(A+B)}{2} \right)=\sin \left( \dfrac{A+B}{2} \right).....\left( 2 \right)\].
Substituting equation \[\left( 2 \right)\] in equation \[\left( 1 \right)\], we have \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)+2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{D-C}{2} \right)\].
We can rewrite this equation as \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\left( \sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right) \right).....\left( 3 \right)\].
We know that \[\sin x+\sin y=2\sin \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)\].
Substituting \[x=\dfrac{B-A}{2},y=\dfrac{D-C}{2}\] in the above equation, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{\dfrac{B-A}{2}+\dfrac{D-C}{2}}{2} \right)\cos \left( \dfrac{\dfrac{B-A}{2}-\dfrac{D-C}{2}}{2} \right)\].
Simplifying the above expression, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{B+D-\left( A+C \right)}{4} \right)\cos \left( \dfrac{B+C-\left( A+D \right)}{4} \right)\].
We can rewrite \[B+D\] as \[B+D=2\pi -(A+C)\] and \[B+C\] as \[B+C=2\pi -\left( A+D \right)\].
Thus, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{2\pi -2\left( A+C \right)}{4} \right)\cos \left( \dfrac{2\pi -2\left( A+D \right)}{4} \right)\].
We can rewrite the above equation as \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{\pi }{2}-\dfrac{A+C}{2} \right)\cos \left( \dfrac{\pi }{2}-\dfrac{A+D}{2} \right)\].
We know that \[\sin \left( \dfrac{\pi }{2}-x \right)=\cos x,\cos \left( \dfrac{\pi }{2}-x \right)=\sin x\].
Thus, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\cos \left( \dfrac{A+C}{2} \right)\sin \left( \dfrac{A+D}{2} \right).....\left( 4 \right)\].
Substituting equation \[\left( 4 \right)\] in equation \[\left( 3 \right)\], we have \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\left( 2\cos \left( \dfrac{A+C}{2} \right)\sin \left( \dfrac{A+D}{2} \right) \right)\].
Simplifying the above expression, we have \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
Hence, we have proved that if \[A+B+C+D=2\pi \] holds, we have \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius \[1\]). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Complete step-by-step answer:
We know that \[A+B+C+D=2\pi \]. We have to prove \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
We will use a formula for the sum of two cosine or sine functions to get the desired expression.
We will simplify the left side of the expression \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
We know that \[\cos x-\cos y=2\sin \left( \dfrac{x+y}{2} \right)\sin \left( \dfrac{y-x}{2} \right)\].
Thus, we have \[\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)\].
Similarly, we have \[\cos C-\cos D=2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right)\].
Adding the two equations, we have \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)+2\sin \left( \dfrac{C+D}{2} \right)\sin \left( \dfrac{D-C}{2} \right).....\left( 1 \right)\].
We can write \[C+D=2\pi -(A+B)\] by rearranging the terms of the expression \[A+B+C+D=2\pi \].
Thus, we have \[\dfrac{C+D}{2}=\pi -\dfrac{(A+B)}{2}\].
So, we have \[\sin \left( \dfrac{C+D}{2} \right)=\sin \left( \pi -\dfrac{(A+B)}{2} \right)\].
As we know, \[\sin \left( \pi -\theta \right)=\sin \theta \], we have \[\sin \left( \pi -\dfrac{(A+B)}{2} \right)=\sin \left( \dfrac{A+B}{2} \right)\].
Thus, we have \[\sin \left( \dfrac{C+D}{2} \right)=\sin \left( \pi -\dfrac{(A+B)}{2} \right)=\sin \left( \dfrac{A+B}{2} \right).....\left( 2 \right)\].
Substituting equation \[\left( 2 \right)\] in equation \[\left( 1 \right)\], we have \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)+2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{D-C}{2} \right)\].
We can rewrite this equation as \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\left( \sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right) \right).....\left( 3 \right)\].
We know that \[\sin x+\sin y=2\sin \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)\].
Substituting \[x=\dfrac{B-A}{2},y=\dfrac{D-C}{2}\] in the above equation, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{\dfrac{B-A}{2}+\dfrac{D-C}{2}}{2} \right)\cos \left( \dfrac{\dfrac{B-A}{2}-\dfrac{D-C}{2}}{2} \right)\].
Simplifying the above expression, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{B+D-\left( A+C \right)}{4} \right)\cos \left( \dfrac{B+C-\left( A+D \right)}{4} \right)\].
We can rewrite \[B+D\] as \[B+D=2\pi -(A+C)\] and \[B+C\] as \[B+C=2\pi -\left( A+D \right)\].
Thus, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{2\pi -2\left( A+C \right)}{4} \right)\cos \left( \dfrac{2\pi -2\left( A+D \right)}{4} \right)\].
We can rewrite the above equation as \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\sin \left( \dfrac{\pi }{2}-\dfrac{A+C}{2} \right)\cos \left( \dfrac{\pi }{2}-\dfrac{A+D}{2} \right)\].
We know that \[\sin \left( \dfrac{\pi }{2}-x \right)=\cos x,\cos \left( \dfrac{\pi }{2}-x \right)=\sin x\].
Thus, we have \[\sin \left( \dfrac{B-A}{2} \right)+\sin \left( \dfrac{D-C}{2} \right)=2\cos \left( \dfrac{A+C}{2} \right)\sin \left( \dfrac{A+D}{2} \right).....\left( 4 \right)\].
Substituting equation \[\left( 4 \right)\] in equation \[\left( 3 \right)\], we have \[\cos A-\cos B+\cos C-\cos D=2\sin \left( \dfrac{A+B}{2} \right)\left( 2\cos \left( \dfrac{A+C}{2} \right)\sin \left( \dfrac{A+D}{2} \right) \right)\].
Simplifying the above expression, we have \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
Hence, we have proved that if \[A+B+C+D=2\pi \] holds, we have \[\cos A-\cos B+\cos C-\cos D=4\sin \dfrac{A+B}{2}\sin \dfrac{A+D}{2}\cos \dfrac{A+C}{2}\].
Note: Trigonometric functions are real functions which relate any angle of a right angled triangle to the ratios of any two of its sides. The widely used trigonometric functions are sine, cosine and tangent. However, we can also use their reciprocals, i.e., cosecant, secant and cotangent. We can use geometric definitions to express the value of these functions on various angles using unit circle (circle with radius \[1\]). We also write these trigonometric functions as infinite series or as solutions to differential equations. Thus, allowing us to expand the domain of these functions from the real line to the complex plane. One should be careful while using the trigonometric identities and rearranging the terms to convert from one trigonometric function to the other one.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

