Answer
Verified
465k+ views
Hint: The full form of AP is Arithmetic progression. It is a mathematical sequence in which the difference between two consecutive terms is always a constant.
In this progression, for a given series, the terms used are the first term, the common difference between the two terms and nth term. Suppose, ${a_1},{a_2},{a_3},{a_4},......{a_n}$ is an AP, then the common difference‘d’ can be obtained as:
$d = {a_2} - {a_1} = {a_3} - {a_2} = ...... = {a_n} - {a_{n - 1}}$
Where‘d’ is a common difference, it can be positive, negative or zero.
Complete step by step answer:
Given that $5,k,11$ are in AP,
AP stands for Arithmetic progression. If these three terms are in Arithmetic progression then the difference between any two consecutive terms should be the same.
First term$ = 5$
Second term$ = k$
Third term$ = 11$
$\therefore $ Second term$ - $ First term$ = $ Third term$ - $ Second term
$ \Rightarrow k - 5 = 11 - k$
$ \Rightarrow k + k = 11 + 5$
$ \Rightarrow 2k = 16$
$ \Rightarrow k = \dfrac{{16}}{2}$
$ \Rightarrow k = 8$
Hence the value of k is $8$.
Note:
In mathematics, there are three different types of progressions. They are:
Arithmetic Progression (AP)
Geometric Progression (GP)
Harmonic Progression (HP)
Arithmetic Progression (AP) - A sequence of numbers is called an arithmetic progression if the difference between any two consecutive terms is always the same.
Geometric Progression (GP) – A sequence of numbers is called an arithmetic progression if the difference between any two consecutive terms is always the same
Harmonic Progression (HP) – A sequence of numbers is called a harmonic progression if the reciprocal of the terms are in Arithmetic Progression.
In this progression, for a given series, the terms used are the first term, the common difference between the two terms and nth term. Suppose, ${a_1},{a_2},{a_3},{a_4},......{a_n}$ is an AP, then the common difference‘d’ can be obtained as:
$d = {a_2} - {a_1} = {a_3} - {a_2} = ...... = {a_n} - {a_{n - 1}}$
Where‘d’ is a common difference, it can be positive, negative or zero.
Complete step by step answer:
Given that $5,k,11$ are in AP,
AP stands for Arithmetic progression. If these three terms are in Arithmetic progression then the difference between any two consecutive terms should be the same.
First term$ = 5$
Second term$ = k$
Third term$ = 11$
$\therefore $ Second term$ - $ First term$ = $ Third term$ - $ Second term
$ \Rightarrow k - 5 = 11 - k$
$ \Rightarrow k + k = 11 + 5$
$ \Rightarrow 2k = 16$
$ \Rightarrow k = \dfrac{{16}}{2}$
$ \Rightarrow k = 8$
Hence the value of k is $8$.
Note:
In mathematics, there are three different types of progressions. They are:
Arithmetic Progression (AP)
Geometric Progression (GP)
Harmonic Progression (HP)
Arithmetic Progression (AP) - A sequence of numbers is called an arithmetic progression if the difference between any two consecutive terms is always the same.
Geometric Progression (GP) – A sequence of numbers is called an arithmetic progression if the difference between any two consecutive terms is always the same
Harmonic Progression (HP) – A sequence of numbers is called a harmonic progression if the reciprocal of the terms are in Arithmetic Progression.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life