If ${{5}^{3x}}=125$ and ${{10}^{y}}=0.001$, then find the value of \[x+y\].
Answer
Verified
506.4k+ views
Hint: Write the given equation in exponent form using the rules of indices which state that when bases are the same the exponents are equal. Then use the value of indices to find the unknown.
Complete step-by-step answer:
In this question we are given that
${{5}^{3x}}=125$ and ${{10}^{y}}=0.001$
If a number is in the form of ${{a}^{b}}$, then a is called base and b is called exponent.
So, to find the value of ‘x’ we will write 125 such as the base will be 5.
We will write $125={{5}^{3}}$.
Substituting the value of 125 in the given equation, we get
${{5}^{3x}}={{5}^{3}}$
Now we will apply rules of indices which state that when bases are the same the exponents are equal.
By comparing ${{5}^{3x}}$ by ${{5}^{3}}$.
We get that,
3x=3
This makes it clear that x=1.
Now we will find the value of ‘y’.
We will write 0.001 such as the base will be 10.
We will write $0.001={{10}^{-3}}$.
Substituting this value in the given equation, we get
${{10}^{y}}={{10}^{-3}}$
Now we will apply rules of indices that are when bases are the same the exponents are equal.
We get that y=-3
In the question we have been given to find,
\[x+y\]
Substituting the obtained values of ‘x’ and ‘y’, we get
$x+y=(1+(-3))=-2$
So, the value of \[x+y\] is ‘-2’.
Note: Students must know the rules of indices by heart to solve such problems with ease.
Another approach to this problem is using the logarithm. In that case also we will get the same result.
Complete step-by-step answer:
In this question we are given that
${{5}^{3x}}=125$ and ${{10}^{y}}=0.001$
If a number is in the form of ${{a}^{b}}$, then a is called base and b is called exponent.
So, to find the value of ‘x’ we will write 125 such as the base will be 5.
We will write $125={{5}^{3}}$.
Substituting the value of 125 in the given equation, we get
${{5}^{3x}}={{5}^{3}}$
Now we will apply rules of indices which state that when bases are the same the exponents are equal.
By comparing ${{5}^{3x}}$ by ${{5}^{3}}$.
We get that,
3x=3
This makes it clear that x=1.
Now we will find the value of ‘y’.
We will write 0.001 such as the base will be 10.
We will write $0.001={{10}^{-3}}$.
Substituting this value in the given equation, we get
${{10}^{y}}={{10}^{-3}}$
Now we will apply rules of indices that are when bases are the same the exponents are equal.
We get that y=-3
In the question we have been given to find,
\[x+y\]
Substituting the obtained values of ‘x’ and ‘y’, we get
$x+y=(1+(-3))=-2$
So, the value of \[x+y\] is ‘-2’.
Note: Students must know the rules of indices by heart to solve such problems with ease.
Another approach to this problem is using the logarithm. In that case also we will get the same result.
Recently Updated Pages
If the perimeter of the equilateral triangle is 18-class-10-maths-CBSE
How do you make the plural form of most of the words class 10 english CBSE
Quotes and Slogans on Consumer Rights Can Anybody Give Me
What is the orbit of a satellite Find out the basis class 10 physics CBSE
the period from 1919 to 1947 forms an important phase class 10 social science CBSE
If the average marks of three batches of 55 60 and class 10 maths CBSE
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
The term disaster is derived from language AGreek BArabic class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Differentiate between natural and artificial ecosy class 10 biology CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE