Answer
Verified
446.4k+ views
Hint: To find the required probability, first we will consider the event $E$ that none of trucks chosen will meet emission standards. We will find the required probability by using the definition. That is, required probability $ = \dfrac{{n\left( E \right)}}{{n\left( S \right)}}$ where $n\left( E \right)$ is the number of favourable (desired) outcomes and $n\left( S \right)$ is the number of total outcomes.
Complete step-by-step answer:
In this problem, it is given that $5$ trucks out of $10$ delivery trucks do not meet emission standard. Also given that $3$ trucks are selected for inspection. Therefore, we can write the given information in the following way:
Total number of delivery trucks $ = 10$
Total number of trucks which do not meet emission standard $ = 5$
Total number of selected trucks $ = 3$
Let us consider the event $E$ that none of trucks chosen will meet emission standards. That is, all selected trucks will not meet emission standards. There are $5$ trucks which do not meet emission standard and we need to select $3$ trucks for inspection. We know that the number of ways of selecting $3$ trucks out of $5$ trucks is given by ${}^5{C_3}$. So, we can say that the total number of favourable outcomes is ${}^5{C_3}$. That is, $n\left( E \right) = {}^5{C_3}$.
There are total $10$ trucks and we need to select $3$ trucks for inspection. We know that the number of ways of selecting $3$ trucks out of $10$ trucks is given by ${}^{10}{C_3}$. So, we can say that the total number of outcomes is ${}^{10}{C_3}$. That is, $n\left( S \right) = {}^{10}{C_3}$.
Now we are going to find the probability of an event $E$ by using the definition. That is,
$P$( none of trucks chosen will meet emission standards ) $ = P\left( E \right) = \dfrac{{n\left( E \right)}}{{n\left( S \right)}}$
$ \Rightarrow P\left( E \right) = \dfrac{{{}^5{C_3}}}{{{}^{10}{C_3}}}$
Let us find ${}^5{C_3}$ and ${}^{10}{C_3}$ by using the formula ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$. Therefore, we get
${}^5{C_3} = \dfrac{{5!}}{{\left( {3!} \right) \times \left( {5 - 3} \right)!}} = \dfrac{{1 \times 2 \times 3 \times 4 \times 5}}{{\left( {1 \times 2 \times 3} \right) \times 2!}} = \dfrac{{4 \times 5}}{{1 \times 2}} = \dfrac{{20}}{2} = 10$ and
${}^{10}{C_3} = \dfrac{{10!}}{{\left( {3!} \right) \times \left( {10 - 3} \right)!}} = \dfrac{{10!}}{{\left( {3!} \right) \times 7!}} = \dfrac{{\left( {7!} \right) \times \left( {8 \times 9 \times 10} \right)}}{{\left( {1 \times 2 \times 3} \right) \times 7!}} = 120$
Let us substitute these values in $P\left( E \right) = \dfrac{{{}^5{C_3}}}{{{}^{10}{C_3}}}$. Therefore, we get $P\left( E \right) = \dfrac{{10}}{{120}} = \dfrac{1}{{12}}$. Therefore, the probability that none of the trucks chosen will meet emission standards is $\dfrac{1}{{12}}$.
Therefore, option C is correct.
Note: For any event $A$, we can write $0 \leqslant P\left( A \right) \leqslant 1$ where $P\left( A \right)$ is the probability of event $A$. The sum of probabilities of all possible outcomes is always $1$. These are the properties of basic probability theory.
Complete step-by-step answer:
In this problem, it is given that $5$ trucks out of $10$ delivery trucks do not meet emission standard. Also given that $3$ trucks are selected for inspection. Therefore, we can write the given information in the following way:
Total number of delivery trucks $ = 10$
Total number of trucks which do not meet emission standard $ = 5$
Total number of selected trucks $ = 3$
Let us consider the event $E$ that none of trucks chosen will meet emission standards. That is, all selected trucks will not meet emission standards. There are $5$ trucks which do not meet emission standard and we need to select $3$ trucks for inspection. We know that the number of ways of selecting $3$ trucks out of $5$ trucks is given by ${}^5{C_3}$. So, we can say that the total number of favourable outcomes is ${}^5{C_3}$. That is, $n\left( E \right) = {}^5{C_3}$.
There are total $10$ trucks and we need to select $3$ trucks for inspection. We know that the number of ways of selecting $3$ trucks out of $10$ trucks is given by ${}^{10}{C_3}$. So, we can say that the total number of outcomes is ${}^{10}{C_3}$. That is, $n\left( S \right) = {}^{10}{C_3}$.
Now we are going to find the probability of an event $E$ by using the definition. That is,
$P$( none of trucks chosen will meet emission standards ) $ = P\left( E \right) = \dfrac{{n\left( E \right)}}{{n\left( S \right)}}$
$ \Rightarrow P\left( E \right) = \dfrac{{{}^5{C_3}}}{{{}^{10}{C_3}}}$
Let us find ${}^5{C_3}$ and ${}^{10}{C_3}$ by using the formula ${}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$. Therefore, we get
${}^5{C_3} = \dfrac{{5!}}{{\left( {3!} \right) \times \left( {5 - 3} \right)!}} = \dfrac{{1 \times 2 \times 3 \times 4 \times 5}}{{\left( {1 \times 2 \times 3} \right) \times 2!}} = \dfrac{{4 \times 5}}{{1 \times 2}} = \dfrac{{20}}{2} = 10$ and
${}^{10}{C_3} = \dfrac{{10!}}{{\left( {3!} \right) \times \left( {10 - 3} \right)!}} = \dfrac{{10!}}{{\left( {3!} \right) \times 7!}} = \dfrac{{\left( {7!} \right) \times \left( {8 \times 9 \times 10} \right)}}{{\left( {1 \times 2 \times 3} \right) \times 7!}} = 120$
Let us substitute these values in $P\left( E \right) = \dfrac{{{}^5{C_3}}}{{{}^{10}{C_3}}}$. Therefore, we get $P\left( E \right) = \dfrac{{10}}{{120}} = \dfrac{1}{{12}}$. Therefore, the probability that none of the trucks chosen will meet emission standards is $\dfrac{1}{{12}}$.
Therefore, option C is correct.
Note: For any event $A$, we can write $0 \leqslant P\left( A \right) \leqslant 1$ where $P\left( A \right)$ is the probability of event $A$. The sum of probabilities of all possible outcomes is always $1$. These are the properties of basic probability theory.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE