Answer
Verified
493.2k+ views
Hint: Here, we have to square the first equation $2x+y=14$ and then apply the second equation $xy=6$ into the first one.
Complete step-by-step answer:
Here, we are given with two equations:
$2x+y=14\text{ }.....\text{ (1)}$
$xy=6\text{ }.....\text{ (2)}$
With the help of these two equations we have to find the value of $4{{x}^{2}}+{{y}^{2}}$.
First, let us consider the equation (1).
By squaring equation (1) on both the sides we get,
${{(2x+y)}^{2}}={{14}^{2}}\text{ }....\text{ (3)}$
From equation (3) we can say that its LHS is of the form ${{(a+b)}^{2}}$whose expansion we are familiar with. i.e. the expansion for ${{(a+b)}^{2}}$is given as:
${{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
In the LHS of equation (3), has the form ${{(a+b)}^{2}}$ where $a=2x$, and $b=y$.
Now by applying the above formula in equation (3) we get:
$\begin{align}
& {{(2x)}^{2}}+2\times 2x\times y+{{y}^{2}}=196 \\
& 4{{x}^{2}}+4xy+{{y}^{2}}=196 \\
\end{align}$
By rearranging the equation we obtain:
$4{{x}^{2}}+{{y}^{2}}+4xy=196\text{ }...\text{ (4)}$
In the LHS of equation (4) we have $4xy$, but we know that $xy=6$. i.e.
In the next step we have to apply equation (2) in equation (4). Hence, we get the equation:
$4{{x}^{2}}+{{y}^{2}}+4\times 6=196$ i.e. by putting $xy=6\text{ }$
$4{{x}^{2}}+{{y}^{2}}+24=196$
In the next step, take 24 to the right side then 24 becomes -24, i.e. take variables to one side and constants to the other side. When the side changes, the sign also changes. i.e. we get the equation:
$\begin{align}
& 4{{x}^{2}}+{{y}^{2}}=196-24 \\
& 4{{x}^{2}}+{{y}^{2}}=172 \\
\end{align}$
Hence, the value of $4{{x}^{2}}+{{y}^{2}}=172$
Note: Here don’t try to solve the equation (1) by putting $y=\dfrac{6}{x}$, it will become more complicated and also there is a large probability that the answer would be wrong. It is better to solve this by squaring the first equation $2x+y=14$.
Complete step-by-step answer:
Here, we are given with two equations:
$2x+y=14\text{ }.....\text{ (1)}$
$xy=6\text{ }.....\text{ (2)}$
With the help of these two equations we have to find the value of $4{{x}^{2}}+{{y}^{2}}$.
First, let us consider the equation (1).
By squaring equation (1) on both the sides we get,
${{(2x+y)}^{2}}={{14}^{2}}\text{ }....\text{ (3)}$
From equation (3) we can say that its LHS is of the form ${{(a+b)}^{2}}$whose expansion we are familiar with. i.e. the expansion for ${{(a+b)}^{2}}$is given as:
${{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$
In the LHS of equation (3), has the form ${{(a+b)}^{2}}$ where $a=2x$, and $b=y$.
Now by applying the above formula in equation (3) we get:
$\begin{align}
& {{(2x)}^{2}}+2\times 2x\times y+{{y}^{2}}=196 \\
& 4{{x}^{2}}+4xy+{{y}^{2}}=196 \\
\end{align}$
By rearranging the equation we obtain:
$4{{x}^{2}}+{{y}^{2}}+4xy=196\text{ }...\text{ (4)}$
In the LHS of equation (4) we have $4xy$, but we know that $xy=6$. i.e.
In the next step we have to apply equation (2) in equation (4). Hence, we get the equation:
$4{{x}^{2}}+{{y}^{2}}+4\times 6=196$ i.e. by putting $xy=6\text{ }$
$4{{x}^{2}}+{{y}^{2}}+24=196$
In the next step, take 24 to the right side then 24 becomes -24, i.e. take variables to one side and constants to the other side. When the side changes, the sign also changes. i.e. we get the equation:
$\begin{align}
& 4{{x}^{2}}+{{y}^{2}}=196-24 \\
& 4{{x}^{2}}+{{y}^{2}}=172 \\
\end{align}$
Hence, the value of $4{{x}^{2}}+{{y}^{2}}=172$
Note: Here don’t try to solve the equation (1) by putting $y=\dfrac{6}{x}$, it will become more complicated and also there is a large probability that the answer would be wrong. It is better to solve this by squaring the first equation $2x+y=14$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it