Answer
Verified
492k+ views
Hint: Write $\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right)$. Then use the cos(a+b) formula to solve it.
Complete step-by-step answer:
We have to find out the approximate value of $\cos \left( {60^\circ 1'} \right)$
$\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right)$
As we know $\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$, using it, we get
$\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right) = \cos 60^\circ \cos 1' - \sin 60^\circ \sin 1'..............\left( 1 \right)$
Now as we know 1 minute i.e. $1' = \dfrac{{1^\circ }}{{60^\circ }} = \dfrac{\alpha }{{60^\circ }}$ as $1^\circ = \alpha$ radians (given)
As we know the value of $\cos 60^\circ = \dfrac{1}{2},{\text{ }}\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}$
Substitute these value in equation 1
$
\Rightarrow \cos \left( {60^\circ 1'} \right) = \cos 60^\circ \cos 1' - \sin 60^\circ \sin 1' \\
\Rightarrow \cos \left( {60^\circ 1'} \right) = \dfrac{1}{2}\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) - \dfrac{{\sqrt 3 }}{2}\sin \left( {\dfrac{\alpha }{{60^\circ }}} \right)..........\left( 2 \right) \\
$
Now,
$\left( {\dfrac{\alpha }{{60^\circ }}} \right) < < < < < 1$
Therefore, approximate value of
$\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) \simeq 1,{\text{ sin}}\left( {\dfrac{\alpha }{{60^\circ }}} \right) \simeq \dfrac{\alpha }{{60^\circ }}$
Therefore from equation 2
$\cos \left( {60^\circ 1'} \right) = \dfrac{1}{2}\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) - \dfrac{{\sqrt 3 }}{2}\sin \left( {\dfrac{\alpha }{{60^\circ }}} \right) = \dfrac{1}{2} \times 1 - \dfrac{{\sqrt 3 }}{2} \times \dfrac{\alpha }{{60^\circ }}$
$ \Rightarrow \cos \left( {60^\circ 1'} \right) = \dfrac{1}{2} - \dfrac{{\alpha \sqrt 3 }}{{120^\circ }}$
Hence the approximate value of $\cos \left( {60^\circ 1'} \right) = \dfrac{1}{2} - \dfrac{{\alpha \sqrt 3 }}{{120^\circ }}$
Hence option (c) is correct.
Note: In these types of problems, it is crucial to remember the sine and cosine of sum of angles and also know the approximate value of $\cos a$ and $\sin a$ if a is very small, then after simplification we will get the required approximate value.
Complete step-by-step answer:
We have to find out the approximate value of $\cos \left( {60^\circ 1'} \right)$
$\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right)$
As we know $\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$, using it, we get
$\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right) = \cos 60^\circ \cos 1' - \sin 60^\circ \sin 1'..............\left( 1 \right)$
Now as we know 1 minute i.e. $1' = \dfrac{{1^\circ }}{{60^\circ }} = \dfrac{\alpha }{{60^\circ }}$ as $1^\circ = \alpha$ radians (given)
As we know the value of $\cos 60^\circ = \dfrac{1}{2},{\text{ }}\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}$
Substitute these value in equation 1
$
\Rightarrow \cos \left( {60^\circ 1'} \right) = \cos 60^\circ \cos 1' - \sin 60^\circ \sin 1' \\
\Rightarrow \cos \left( {60^\circ 1'} \right) = \dfrac{1}{2}\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) - \dfrac{{\sqrt 3 }}{2}\sin \left( {\dfrac{\alpha }{{60^\circ }}} \right)..........\left( 2 \right) \\
$
Now,
$\left( {\dfrac{\alpha }{{60^\circ }}} \right) < < < < < 1$
Therefore, approximate value of
$\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) \simeq 1,{\text{ sin}}\left( {\dfrac{\alpha }{{60^\circ }}} \right) \simeq \dfrac{\alpha }{{60^\circ }}$
Therefore from equation 2
$\cos \left( {60^\circ 1'} \right) = \dfrac{1}{2}\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) - \dfrac{{\sqrt 3 }}{2}\sin \left( {\dfrac{\alpha }{{60^\circ }}} \right) = \dfrac{1}{2} \times 1 - \dfrac{{\sqrt 3 }}{2} \times \dfrac{\alpha }{{60^\circ }}$
$ \Rightarrow \cos \left( {60^\circ 1'} \right) = \dfrac{1}{2} - \dfrac{{\alpha \sqrt 3 }}{{120^\circ }}$
Hence the approximate value of $\cos \left( {60^\circ 1'} \right) = \dfrac{1}{2} - \dfrac{{\alpha \sqrt 3 }}{{120^\circ }}$
Hence option (c) is correct.
Note: In these types of problems, it is crucial to remember the sine and cosine of sum of angles and also know the approximate value of $\cos a$ and $\sin a$ if a is very small, then after simplification we will get the required approximate value.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE