If $1^\circ = \alpha $ radians, then the approximate value of $\cos \left( {60^\circ 1'} \right)$ is
$
{\text{a}}{\text{. }}\dfrac{1}{2} + \dfrac{{\alpha \sqrt 3 }}{{120}} \\
{\text{b}}{\text{. }}\dfrac{1}{2} - \dfrac{\alpha }{{120}} \\
{\text{c}}{\text{. }}\dfrac{1}{2} - \dfrac{{\alpha \sqrt 3 }}{{120}} \\
{\text{d}}{\text{. }}\dfrac{1}{2} + \dfrac{{\alpha \sqrt 3 }}{{120}} \\
$
Answer
361.5k+ views
Hint: Write $\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right)$. Then use the cos(a+b) formula to solve it.
Complete step-by-step answer:
We have to find out the approximate value of $\cos \left( {60^\circ 1'} \right)$
$\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right)$
As we know $\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$, using it, we get
$\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right) = \cos 60^\circ \cos 1' - \sin 60^\circ \sin 1'..............\left( 1 \right)$
Now as we know 1 minute i.e. $1' = \dfrac{{1^\circ }}{{60^\circ }} = \dfrac{\alpha }{{60^\circ }}$ as $1^\circ = \alpha$ radians (given)
As we know the value of $\cos 60^\circ = \dfrac{1}{2},{\text{ }}\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}$
Substitute these value in equation 1
$
\Rightarrow \cos \left( {60^\circ 1'} \right) = \cos 60^\circ \cos 1' - \sin 60^\circ \sin 1' \\
\Rightarrow \cos \left( {60^\circ 1'} \right) = \dfrac{1}{2}\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) - \dfrac{{\sqrt 3 }}{2}\sin \left( {\dfrac{\alpha }{{60^\circ }}} \right)..........\left( 2 \right) \\
$
Now,
$\left( {\dfrac{\alpha }{{60^\circ }}} \right) < < < < < 1$
Therefore, approximate value of
$\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) \simeq 1,{\text{ sin}}\left( {\dfrac{\alpha }{{60^\circ }}} \right) \simeq \dfrac{\alpha }{{60^\circ }}$
Therefore from equation 2
$\cos \left( {60^\circ 1'} \right) = \dfrac{1}{2}\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) - \dfrac{{\sqrt 3 }}{2}\sin \left( {\dfrac{\alpha }{{60^\circ }}} \right) = \dfrac{1}{2} \times 1 - \dfrac{{\sqrt 3 }}{2} \times \dfrac{\alpha }{{60^\circ }}$
$ \Rightarrow \cos \left( {60^\circ 1'} \right) = \dfrac{1}{2} - \dfrac{{\alpha \sqrt 3 }}{{120^\circ }}$
Hence the approximate value of $\cos \left( {60^\circ 1'} \right) = \dfrac{1}{2} - \dfrac{{\alpha \sqrt 3 }}{{120^\circ }}$
Hence option (c) is correct.
Note: In these types of problems, it is crucial to remember the sine and cosine of sum of angles and also know the approximate value of $\cos a$ and $\sin a$ if a is very small, then after simplification we will get the required approximate value.
Complete step-by-step answer:
We have to find out the approximate value of $\cos \left( {60^\circ 1'} \right)$
$\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right)$
As we know $\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$, using it, we get
$\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right) = \cos 60^\circ \cos 1' - \sin 60^\circ \sin 1'..............\left( 1 \right)$
Now as we know 1 minute i.e. $1' = \dfrac{{1^\circ }}{{60^\circ }} = \dfrac{\alpha }{{60^\circ }}$ as $1^\circ = \alpha$ radians (given)
As we know the value of $\cos 60^\circ = \dfrac{1}{2},{\text{ }}\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}$
Substitute these value in equation 1
$
\Rightarrow \cos \left( {60^\circ 1'} \right) = \cos 60^\circ \cos 1' - \sin 60^\circ \sin 1' \\
\Rightarrow \cos \left( {60^\circ 1'} \right) = \dfrac{1}{2}\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) - \dfrac{{\sqrt 3 }}{2}\sin \left( {\dfrac{\alpha }{{60^\circ }}} \right)..........\left( 2 \right) \\
$
Now,
$\left( {\dfrac{\alpha }{{60^\circ }}} \right) < < < < < 1$
Therefore, approximate value of
$\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) \simeq 1,{\text{ sin}}\left( {\dfrac{\alpha }{{60^\circ }}} \right) \simeq \dfrac{\alpha }{{60^\circ }}$
Therefore from equation 2
$\cos \left( {60^\circ 1'} \right) = \dfrac{1}{2}\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) - \dfrac{{\sqrt 3 }}{2}\sin \left( {\dfrac{\alpha }{{60^\circ }}} \right) = \dfrac{1}{2} \times 1 - \dfrac{{\sqrt 3 }}{2} \times \dfrac{\alpha }{{60^\circ }}$
$ \Rightarrow \cos \left( {60^\circ 1'} \right) = \dfrac{1}{2} - \dfrac{{\alpha \sqrt 3 }}{{120^\circ }}$
Hence the approximate value of $\cos \left( {60^\circ 1'} \right) = \dfrac{1}{2} - \dfrac{{\alpha \sqrt 3 }}{{120^\circ }}$
Hence option (c) is correct.
Note: In these types of problems, it is crucial to remember the sine and cosine of sum of angles and also know the approximate value of $\cos a$ and $\sin a$ if a is very small, then after simplification we will get the required approximate value.
Last updated date: 21st Sep 2023
•
Total views: 361.5k
•
Views today: 6.61k
Recently Updated Pages
What do you mean by public facilities

Slogan on Noise Pollution

Paragraph on Friendship

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

What is the Full Form of ILO, UNICEF and UNESCO

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the past tense of read class 10 english CBSE
