If $1^\circ = \alpha $ radians, then the approximate value of $\cos \left( {60^\circ 1'} \right)$ is
$
{\text{a}}{\text{. }}\dfrac{1}{2} + \dfrac{{\alpha \sqrt 3 }}{{120}} \\
{\text{b}}{\text{. }}\dfrac{1}{2} - \dfrac{\alpha }{{120}} \\
{\text{c}}{\text{. }}\dfrac{1}{2} - \dfrac{{\alpha \sqrt 3 }}{{120}} \\
{\text{d}}{\text{. }}\dfrac{1}{2} + \dfrac{{\alpha \sqrt 3 }}{{120}} \\
$
Last updated date: 18th Mar 2023
•
Total views: 305.4k
•
Views today: 4.84k
Answer
305.4k+ views
Hint: Write $\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right)$. Then use the cos(a+b) formula to solve it.
Complete step-by-step answer:
We have to find out the approximate value of $\cos \left( {60^\circ 1'} \right)$
$\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right)$
As we know $\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$, using it, we get
$\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right) = \cos 60^\circ \cos 1' - \sin 60^\circ \sin 1'..............\left( 1 \right)$
Now as we know 1 minute i.e. $1' = \dfrac{{1^\circ }}{{60^\circ }} = \dfrac{\alpha }{{60^\circ }}$ as $1^\circ = \alpha$ radians (given)
As we know the value of $\cos 60^\circ = \dfrac{1}{2},{\text{ }}\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}$
Substitute these value in equation 1
$
\Rightarrow \cos \left( {60^\circ 1'} \right) = \cos 60^\circ \cos 1' - \sin 60^\circ \sin 1' \\
\Rightarrow \cos \left( {60^\circ 1'} \right) = \dfrac{1}{2}\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) - \dfrac{{\sqrt 3 }}{2}\sin \left( {\dfrac{\alpha }{{60^\circ }}} \right)..........\left( 2 \right) \\
$
Now,
$\left( {\dfrac{\alpha }{{60^\circ }}} \right) < < < < < 1$
Therefore, approximate value of
$\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) \simeq 1,{\text{ sin}}\left( {\dfrac{\alpha }{{60^\circ }}} \right) \simeq \dfrac{\alpha }{{60^\circ }}$
Therefore from equation 2
$\cos \left( {60^\circ 1'} \right) = \dfrac{1}{2}\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) - \dfrac{{\sqrt 3 }}{2}\sin \left( {\dfrac{\alpha }{{60^\circ }}} \right) = \dfrac{1}{2} \times 1 - \dfrac{{\sqrt 3 }}{2} \times \dfrac{\alpha }{{60^\circ }}$
$ \Rightarrow \cos \left( {60^\circ 1'} \right) = \dfrac{1}{2} - \dfrac{{\alpha \sqrt 3 }}{{120^\circ }}$
Hence the approximate value of $\cos \left( {60^\circ 1'} \right) = \dfrac{1}{2} - \dfrac{{\alpha \sqrt 3 }}{{120^\circ }}$
Hence option (c) is correct.
Note: In these types of problems, it is crucial to remember the sine and cosine of sum of angles and also know the approximate value of $\cos a$ and $\sin a$ if a is very small, then after simplification we will get the required approximate value.
Complete step-by-step answer:
We have to find out the approximate value of $\cos \left( {60^\circ 1'} \right)$
$\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right)$
As we know $\cos \left( {a + b} \right) = \cos a\cos b - \sin a\sin b$, using it, we get
$\cos \left( {60^\circ 1'} \right) = \cos \left( {60^\circ + 1'} \right) = \cos 60^\circ \cos 1' - \sin 60^\circ \sin 1'..............\left( 1 \right)$
Now as we know 1 minute i.e. $1' = \dfrac{{1^\circ }}{{60^\circ }} = \dfrac{\alpha }{{60^\circ }}$ as $1^\circ = \alpha$ radians (given)
As we know the value of $\cos 60^\circ = \dfrac{1}{2},{\text{ }}\sin 60^\circ = \dfrac{{\sqrt 3 }}{2}$
Substitute these value in equation 1
$
\Rightarrow \cos \left( {60^\circ 1'} \right) = \cos 60^\circ \cos 1' - \sin 60^\circ \sin 1' \\
\Rightarrow \cos \left( {60^\circ 1'} \right) = \dfrac{1}{2}\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) - \dfrac{{\sqrt 3 }}{2}\sin \left( {\dfrac{\alpha }{{60^\circ }}} \right)..........\left( 2 \right) \\
$
Now,
$\left( {\dfrac{\alpha }{{60^\circ }}} \right) < < < < < 1$
Therefore, approximate value of
$\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) \simeq 1,{\text{ sin}}\left( {\dfrac{\alpha }{{60^\circ }}} \right) \simeq \dfrac{\alpha }{{60^\circ }}$
Therefore from equation 2
$\cos \left( {60^\circ 1'} \right) = \dfrac{1}{2}\cos \left( {\dfrac{\alpha }{{60^\circ }}} \right) - \dfrac{{\sqrt 3 }}{2}\sin \left( {\dfrac{\alpha }{{60^\circ }}} \right) = \dfrac{1}{2} \times 1 - \dfrac{{\sqrt 3 }}{2} \times \dfrac{\alpha }{{60^\circ }}$
$ \Rightarrow \cos \left( {60^\circ 1'} \right) = \dfrac{1}{2} - \dfrac{{\alpha \sqrt 3 }}{{120^\circ }}$
Hence the approximate value of $\cos \left( {60^\circ 1'} \right) = \dfrac{1}{2} - \dfrac{{\alpha \sqrt 3 }}{{120^\circ }}$
Hence option (c) is correct.
Note: In these types of problems, it is crucial to remember the sine and cosine of sum of angles and also know the approximate value of $\cos a$ and $\sin a$ if a is very small, then after simplification we will get the required approximate value.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
