
If $\$ 10,000$ is invested at $10$ percent annual interest, compounded semi-annually, what is the balance after $1$ year?
A. $\$ 10100.25$
B. $\$ 10200.25$
C. $\$ 11025$
D. $\$ 10100$
Answer
584.7k+ views
Hint: In this problem, given that the rate of interest is annual and the interest is compounded semi-annually (that is, six months). That means the interest paid at the end of every six months is one-half of the rate of interest per annum. So, the rate of annual interest is $\dfrac{R}{2}\% $ and the number of years is doubled (that is, $2T$). We will find the amount (balance) $A$ for $1$ year by using the formula $A = P{\left( {1 + \dfrac{R}{{100}}} \right)^T}$.
Complete step by step solution: Here given that the principal amount $P = $$\$ 10,000$, rate of interest $R = 10\% $ per annum and time $T = 1$ year. Also given that the interest is compounded semi-annually (that is, six months). So, the interest paid at the end of every six months is one-half of the rate of interest per annum. So, the rate of annual interest is $R = \dfrac{{10}}{2}\% = 5\% $ and the number of years is doubled. That is, $T = 2$ half years.
Now we are going to find the amount for $1$ year by using the formula $A = P{\left( {1 + \dfrac{R}{{100}}} \right)^T}$ where $P$ is principal amount, $R$ is rate of annual interest and $T$ is time in half years.
Now we are going to substitute the values of $P$, $R$ and $T$ in the formula of amount for $1$ year.
Therefore, $A = 10000{\left( {1 + \dfrac{5}{{100}}} \right)^2}$
$ \Rightarrow $ $A = 10000{\left( {\dfrac{{100 + 5}}{{100}}} \right)^2}$
$ \Rightarrow $$A = 10000{\left( {\dfrac{{105}}{{100}}} \right)^2} = 10000\left( {\dfrac{{105 \times 105}}{{100 \times 100}}} \right)$
$ \Rightarrow $ $A = 105 \times 105 = \$ 11025$
Therefore, the balance after $1$ year will be $\$ 11025$.
Therefore, option C is correct.
Note: Simple interest is calculated only on the principal amount but compound interest is calculated on principal amount as well as previous year’s interest. If interest is paid only for $T = 1$ year then there is no distinction between simple interest and compound interest. To find simple interest, we can use the formula $\dfrac{{PRT}}{{100}}$ where $P$ is principal amount, $R$ is rate of interest and $T$ is time in years.
Complete step by step solution: Here given that the principal amount $P = $$\$ 10,000$, rate of interest $R = 10\% $ per annum and time $T = 1$ year. Also given that the interest is compounded semi-annually (that is, six months). So, the interest paid at the end of every six months is one-half of the rate of interest per annum. So, the rate of annual interest is $R = \dfrac{{10}}{2}\% = 5\% $ and the number of years is doubled. That is, $T = 2$ half years.
Now we are going to find the amount for $1$ year by using the formula $A = P{\left( {1 + \dfrac{R}{{100}}} \right)^T}$ where $P$ is principal amount, $R$ is rate of annual interest and $T$ is time in half years.
Now we are going to substitute the values of $P$, $R$ and $T$ in the formula of amount for $1$ year.
Therefore, $A = 10000{\left( {1 + \dfrac{5}{{100}}} \right)^2}$
$ \Rightarrow $ $A = 10000{\left( {\dfrac{{100 + 5}}{{100}}} \right)^2}$
$ \Rightarrow $$A = 10000{\left( {\dfrac{{105}}{{100}}} \right)^2} = 10000\left( {\dfrac{{105 \times 105}}{{100 \times 100}}} \right)$
$ \Rightarrow $ $A = 105 \times 105 = \$ 11025$
Therefore, the balance after $1$ year will be $\$ 11025$.
Therefore, option C is correct.
Note: Simple interest is calculated only on the principal amount but compound interest is calculated on principal amount as well as previous year’s interest. If interest is paid only for $T = 1$ year then there is no distinction between simple interest and compound interest. To find simple interest, we can use the formula $\dfrac{{PRT}}{{100}}$ where $P$ is principal amount, $R$ is rate of interest and $T$ is time in years.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Who among the following opened first school for girls class 9 social science CBSE

What does the word meridian mean A New day B Midday class 9 social science CBSE

Distinguish between Conventional and nonconventional class 9 social science CBSE

The voting age has been reduced from 21 to 18 by the class 9 social science CBSE

Define development

What are the conditions under which democracies accommodate class 9 social science CBSE

