
If 1 is zero of the polynomial $p\left( x \right) = a{x^2} - 3\left( {a - 1} \right)x - 1$, then find the value of $a$.
Answer
594.3k+ views
Hint: In this question, it is given that 1 is the zero of polynomial $p\left( x \right) = a{x^2} - 3\left( {a - 1} \right)x - 1$ which means that if we put $x = 1$in polynomial $p\left( x \right)$ then we have $p\left( 1 \right) = 0$ and then we get the value of $a$.
Complete step-by-step answer:
We have been given that $p\left( x \right) = a{x^2} - 3\left( {a - 1} \right)x - 1$……….. (1)
Now putting $x = 1$in equation (1) we get,
$p\left( 1 \right) = a{\left( 1 \right)^2} - 3\left( {a - 1} \right)\left( 1 \right) - 1$ ………… (2)
Since 1 is zero of the polynomial $p\left( x \right)$ hence at $x = 1$the value of $p\left( 1 \right) = 0$
From equation (2) we have,
$p\left( 1 \right) = a{\left( 1 \right)^2} - 3\left( {a - 1} \right)\left( 1 \right) - 1 = 0$……….. (3)
Now simplify the equation (3) we get,
$
\Rightarrow a{\left( 1 \right)^2} - 3\left( {a - 1} \right)\left( 1 \right) - 1 = 0 \\
\Rightarrow a - 3\left( {a - 1} \right) - 1 = 0 \\
\Rightarrow a - 3a + 3 - 1 = 0 \\
\Rightarrow - 2a + 2 = 0 \\
\Rightarrow - 2a = - 2 \\
\Rightarrow a = \dfrac{{ - 2}}{{ - 2}} \\
\Rightarrow a = 1 \\
$
And hence the value of $a = 1$.
Note: Whenever we face such types of problems the key concept is by putting the value of variable in the polynomial equal to the given zeros of the polynomial and equate the polynomial to zero at the given zeros to get the value of constant used in the polynomial.
Complete step-by-step answer:
We have been given that $p\left( x \right) = a{x^2} - 3\left( {a - 1} \right)x - 1$……….. (1)
Now putting $x = 1$in equation (1) we get,
$p\left( 1 \right) = a{\left( 1 \right)^2} - 3\left( {a - 1} \right)\left( 1 \right) - 1$ ………… (2)
Since 1 is zero of the polynomial $p\left( x \right)$ hence at $x = 1$the value of $p\left( 1 \right) = 0$
From equation (2) we have,
$p\left( 1 \right) = a{\left( 1 \right)^2} - 3\left( {a - 1} \right)\left( 1 \right) - 1 = 0$……….. (3)
Now simplify the equation (3) we get,
$
\Rightarrow a{\left( 1 \right)^2} - 3\left( {a - 1} \right)\left( 1 \right) - 1 = 0 \\
\Rightarrow a - 3\left( {a - 1} \right) - 1 = 0 \\
\Rightarrow a - 3a + 3 - 1 = 0 \\
\Rightarrow - 2a + 2 = 0 \\
\Rightarrow - 2a = - 2 \\
\Rightarrow a = \dfrac{{ - 2}}{{ - 2}} \\
\Rightarrow a = 1 \\
$
And hence the value of $a = 1$.
Note: Whenever we face such types of problems the key concept is by putting the value of variable in the polynomial equal to the given zeros of the polynomial and equate the polynomial to zero at the given zeros to get the value of constant used in the polynomial.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

