Courses
Courses for Kids
Free study material
Free LIVE classes
More LIVE
Join Vedantu’s FREE Mastercalss

# If 1 is zero of the polynomial $p\left( x \right) = a{x^2} - 3\left( {a - 1} \right)x - 1$, then find the value of $a$. Verified
360.3k+ views
Hint: In this question, it is given that 1 is the zero of polynomial $p\left( x \right) = a{x^2} - 3\left( {a - 1} \right)x - 1$ which means that if we put $x = 1$in polynomial $p\left( x \right)$ then we have $p\left( 1 \right) = 0$ and then we get the value of $a$.

We have been given that $p\left( x \right) = a{x^2} - 3\left( {a - 1} \right)x - 1$……….. (1)
Now putting $x = 1$in equation (1) we get,
$p\left( 1 \right) = a{\left( 1 \right)^2} - 3\left( {a - 1} \right)\left( 1 \right) - 1$ ………… (2)
Since 1 is zero of the polynomial $p\left( x \right)$ hence at $x = 1$the value of $p\left( 1 \right) = 0$
From equation (2) we have,
$p\left( 1 \right) = a{\left( 1 \right)^2} - 3\left( {a - 1} \right)\left( 1 \right) - 1 = 0$……….. (3)
Now simplify the equation (3) we get,
$\Rightarrow a{\left( 1 \right)^2} - 3\left( {a - 1} \right)\left( 1 \right) - 1 = 0 \\ \Rightarrow a - 3\left( {a - 1} \right) - 1 = 0 \\ \Rightarrow a - 3a + 3 - 1 = 0 \\ \Rightarrow - 2a + 2 = 0 \\ \Rightarrow - 2a = - 2 \\ \Rightarrow a = \dfrac{{ - 2}}{{ - 2}} \\ \Rightarrow a = 1 \\$
And hence the value of $a = 1$.

Note: Whenever we face such types of problems the key concept is by putting the value of variable in the polynomial equal to the given zeros of the polynomial and equate the polynomial to zero at the given zeros to get the value of constant used in the polynomial.
Last updated date: 21st Sep 2023
Total views: 360.3k
Views today: 11.60k