
If 1 is the zero of $f\left( x \right) = k{x^2} - 3kx + 3k - 1$ then the value(s) of $k$ is
Answer
606.3k+ views
Hint- Use the concept that for a quadratic equation or any function the zero of that quadratic equation or the function will always satisfy the equation or the value of that function will be zero.
Complete step-by-step solution -
Given that the function is $f\left( x \right) = k{x^2} - 3kx + 3k - 1$
And 1 is the zero of the equation. So by the help of hint we have
$f\left( 1 \right) = 0$
So proceeding forward with the function, we have
$
f\left( {x = 1} \right) = {\left. {k{x^2} - 3kx + 3k - 1} \right|_{x = 1}} = 0 \\
\Rightarrow f\left( 1 \right) = k{\left( 1 \right)^2} - 3k\left( 1 \right) + 3\left( 1 \right) - 1 = 0 \\
\Rightarrow k - 3k + 3 - 1 = 0 \\
$
Proceeding forward in order to find the value of $k$
\[ \Rightarrow k - 3k + 3 - 1 = 0 \\
\Rightarrow - 2k + 2 = 0 \\
\Rightarrow - 2k = - 2 \\
\Rightarrow k = 1 \\
\]
Hence, the value of k is 1.
Note- A zero of a function is an input value to the function that produces an output of 0. Also remember that roots of an equation are also called its zero. If one of the roots of the function is given, other roots can also be found out easily. Remember these points while solving such problems.
Complete step-by-step solution -
Given that the function is $f\left( x \right) = k{x^2} - 3kx + 3k - 1$
And 1 is the zero of the equation. So by the help of hint we have
$f\left( 1 \right) = 0$
So proceeding forward with the function, we have
$
f\left( {x = 1} \right) = {\left. {k{x^2} - 3kx + 3k - 1} \right|_{x = 1}} = 0 \\
\Rightarrow f\left( 1 \right) = k{\left( 1 \right)^2} - 3k\left( 1 \right) + 3\left( 1 \right) - 1 = 0 \\
\Rightarrow k - 3k + 3 - 1 = 0 \\
$
Proceeding forward in order to find the value of $k$
\[ \Rightarrow k - 3k + 3 - 1 = 0 \\
\Rightarrow - 2k + 2 = 0 \\
\Rightarrow - 2k = - 2 \\
\Rightarrow k = 1 \\
\]
Hence, the value of k is 1.
Note- A zero of a function is an input value to the function that produces an output of 0. Also remember that roots of an equation are also called its zero. If one of the roots of the function is given, other roots can also be found out easily. Remember these points while solving such problems.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

