
If (1, 0), (0, 1), (1, 1) are the coordinates of vertices of a triangle. The triangle is _______ triangle.
(a) Isosceles
(b) Obtuse angled
(c) Acute angled
(d) Equilateral
Answer
619.2k+ views
Hint: Take the points (1, 0), (0, 1), (1, 1) as A, B, C respectively, obtains the values of AB, BC and CA using formula \[\sqrt{{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}+{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}}\], if \[\left( {{x}_{1}},{{x}_{2}} \right)\] and \[\left( {{y}_{1}},{{y}_{2}} \right)\] are points. Then try to find similarities and relations to get desired results.
Complete step-by-step answer:
Let us take A as (1,0), B as (0,1) and C as (1,1).
Then we will find length of AB, BC and CA using following formula:
If points are $\left( {{x}_{1}},{{y}_{2}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ then its distance is $\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$ .
So, if A is (1,0) and B is (0,1), then
\[AB=\sqrt{{{\left( 0-1 \right)}^{2}}+{{\left( 1-0 \right)}^{2}}}=\sqrt{1+1}\]
Hence, $AB=\sqrt{2}$
Now if B is (0,1) and C is (1,1), then
\[BC=\sqrt{{{\left( 1-0 \right)}^{2}}+{{\left( 1-1 \right)}^{2}}}=\sqrt{{{1}^{2}}+{{0}^{2}}}\]
Hence, BC = 1.
Now, if C is (1,1) and A is (1,0), then
\[CA=\sqrt{{{\left( 1-1 \right)}^{2}}+{{\left( 0-1 \right)}^{2}}}=\sqrt{{{0}^{2}}+{{1}^{2}}}\]
Hence, CA = 1.
So, we can say that $BC=CA\ne AB$.
Therefore, we can say that it is an isosceles triangle and not an equilateral triangle because in isosceles triangle two sides are equal.
Now we will apply Pythagoras theorem,
$\begin{align}
& B{{C}^{2}}+C{{A}^{2}}=A{{B}^{2}} \\
& {{1}^{2}}+{{1}^{2}}={{\left( \sqrt{2} \right)}^{2}} \\
\end{align}$
2 = 2.
Here the left hand side is equal to the right hand side. So, the triangle ABC is a right angled triangle.
Therefore, triangle ABC is an acute angled isosceles triangle and not an obtuse angled triangle.
Hence, the correct answer is option (a) and (c).
Note: Another approach is by plotting the points (1, 0), (0, 1) and (1,1) on the graph and joining the points one will just compare the lengths of triangles to understand what will be the answer. Students often stop their solution once they get to know that the triangle is an isosceles triangle. We should check for acute and obtuse angled conditions too.
Complete step-by-step answer:
Let us take A as (1,0), B as (0,1) and C as (1,1).
Then we will find length of AB, BC and CA using following formula:
If points are $\left( {{x}_{1}},{{y}_{2}} \right)$ and $\left( {{x}_{2}},{{y}_{2}} \right)$ then its distance is $\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$ .
So, if A is (1,0) and B is (0,1), then
\[AB=\sqrt{{{\left( 0-1 \right)}^{2}}+{{\left( 1-0 \right)}^{2}}}=\sqrt{1+1}\]
Hence, $AB=\sqrt{2}$
Now if B is (0,1) and C is (1,1), then
\[BC=\sqrt{{{\left( 1-0 \right)}^{2}}+{{\left( 1-1 \right)}^{2}}}=\sqrt{{{1}^{2}}+{{0}^{2}}}\]
Hence, BC = 1.
Now, if C is (1,1) and A is (1,0), then
\[CA=\sqrt{{{\left( 1-1 \right)}^{2}}+{{\left( 0-1 \right)}^{2}}}=\sqrt{{{0}^{2}}+{{1}^{2}}}\]
Hence, CA = 1.
So, we can say that $BC=CA\ne AB$.
Therefore, we can say that it is an isosceles triangle and not an equilateral triangle because in isosceles triangle two sides are equal.
Now we will apply Pythagoras theorem,
$\begin{align}
& B{{C}^{2}}+C{{A}^{2}}=A{{B}^{2}} \\
& {{1}^{2}}+{{1}^{2}}={{\left( \sqrt{2} \right)}^{2}} \\
\end{align}$
2 = 2.
Here the left hand side is equal to the right hand side. So, the triangle ABC is a right angled triangle.
Therefore, triangle ABC is an acute angled isosceles triangle and not an obtuse angled triangle.
Hence, the correct answer is option (a) and (c).
Note: Another approach is by plotting the points (1, 0), (0, 1) and (1,1) on the graph and joining the points one will just compare the lengths of triangles to understand what will be the answer. Students often stop their solution once they get to know that the triangle is an isosceles triangle. We should check for acute and obtuse angled conditions too.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

