
If $1 + 6 + 11 + 16 + .......... + x = 148$ , then the value of x is
$\left( a \right)36$
$\left( b \right)35$
$\left( c \right) - 36$
$\left( d \right)$None of these
Answer
597k+ views
Hint: Use formula of nth term of an A.P ${a_n} = a + \left( {n - 1} \right)d$ and also use sum of n term of an A.P ${S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ where a is a first term, d is a common difference and n is number of terms.
Complete step-by-step answer:
Given series, $1 + 6 + 11 + 16 + .......... + x = 148$
First we check type of series,
Common difference, d=6-1=11-6=16-11=5
So, We can see given series form an A.P with first term, a=1 and common difference, d=5.
Now, last term of an A.P is ${a_n} = x$ .So, we apply formula of nth term of an A.P $
{a_n} = a + \left( {n - 1} \right)d \\
\Rightarrow x = 1 + \left( {n - 1} \right)5 \\
\Rightarrow x = 1 + 5n - 5 \\
\Rightarrow x = 5n - 4..........\left( 1 \right) \\
$
Given, sum of n terms of an A.P ${S_n} = 148$ . So, we use the formula of sum of n terms of an A.P.
$
{S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right) \\
\Rightarrow 148 = \dfrac{n}{2}\left( {2 \times 1 + \left( {n - 1} \right) \times 5} \right) \\
\Rightarrow 296 = n\left( {5n - 3} \right) \\
\Rightarrow 5{n^2} - 3n - 296 = 0 \\
$
Now, factories the quadratic equation .
$
\Rightarrow \left( {n - 8} \right)\left( {5n + 37} \right) = 0 \\
\Rightarrow n = 8,\dfrac{{ - 37}}{5} \\
$
We know the number of terms cannot be negative so we eliminate the negative value.
So, $n = 8$
Now, put the value of n in (1) equation.
$
\Rightarrow x = 5 \times 8 - 4 \\
\Rightarrow x = 40 - 4 \\
\Rightarrow x = 36 \\
$
So, the correct option is (a).
Note: Whenever we face such types of problems we use some important points. First we check which type of series formed then we apply the formula of nth term and sum of n terms then after some calculation we can get the required answer.
Complete step-by-step answer:
Given series, $1 + 6 + 11 + 16 + .......... + x = 148$
First we check type of series,
Common difference, d=6-1=11-6=16-11=5
So, We can see given series form an A.P with first term, a=1 and common difference, d=5.
Now, last term of an A.P is ${a_n} = x$ .So, we apply formula of nth term of an A.P $
{a_n} = a + \left( {n - 1} \right)d \\
\Rightarrow x = 1 + \left( {n - 1} \right)5 \\
\Rightarrow x = 1 + 5n - 5 \\
\Rightarrow x = 5n - 4..........\left( 1 \right) \\
$
Given, sum of n terms of an A.P ${S_n} = 148$ . So, we use the formula of sum of n terms of an A.P.
$
{S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right) \\
\Rightarrow 148 = \dfrac{n}{2}\left( {2 \times 1 + \left( {n - 1} \right) \times 5} \right) \\
\Rightarrow 296 = n\left( {5n - 3} \right) \\
\Rightarrow 5{n^2} - 3n - 296 = 0 \\
$
Now, factories the quadratic equation .
$
\Rightarrow \left( {n - 8} \right)\left( {5n + 37} \right) = 0 \\
\Rightarrow n = 8,\dfrac{{ - 37}}{5} \\
$
We know the number of terms cannot be negative so we eliminate the negative value.
So, $n = 8$
Now, put the value of n in (1) equation.
$
\Rightarrow x = 5 \times 8 - 4 \\
\Rightarrow x = 40 - 4 \\
\Rightarrow x = 36 \\
$
So, the correct option is (a).
Note: Whenever we face such types of problems we use some important points. First we check which type of series formed then we apply the formula of nth term and sum of n terms then after some calculation we can get the required answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

