If $1 + 6 + 11 + 16 + .......... + x = 148$ , then the value of x is
$\left( a \right)36$
$\left( b \right)35$
$\left( c \right) - 36$
$\left( d \right)$None of these
Last updated date: 20th Mar 2023
•
Total views: 305.7k
•
Views today: 4.85k
Answer
305.7k+ views
Hint: Use formula of nth term of an A.P ${a_n} = a + \left( {n - 1} \right)d$ and also use sum of n term of an A.P ${S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right)$ where a is a first term, d is a common difference and n is number of terms.
Complete step-by-step answer:
Given series, $1 + 6 + 11 + 16 + .......... + x = 148$
First we check type of series,
Common difference, d=6-1=11-6=16-11=5
So, We can see given series form an A.P with first term, a=1 and common difference, d=5.
Now, last term of an A.P is ${a_n} = x$ .So, we apply formula of nth term of an A.P $
{a_n} = a + \left( {n - 1} \right)d \\
\Rightarrow x = 1 + \left( {n - 1} \right)5 \\
\Rightarrow x = 1 + 5n - 5 \\
\Rightarrow x = 5n - 4..........\left( 1 \right) \\
$
Given, sum of n terms of an A.P ${S_n} = 148$ . So, we use the formula of sum of n terms of an A.P.
$
{S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right) \\
\Rightarrow 148 = \dfrac{n}{2}\left( {2 \times 1 + \left( {n - 1} \right) \times 5} \right) \\
\Rightarrow 296 = n\left( {5n - 3} \right) \\
\Rightarrow 5{n^2} - 3n - 296 = 0 \\
$
Now, factories the quadratic equation .
$
\Rightarrow \left( {n - 8} \right)\left( {5n + 37} \right) = 0 \\
\Rightarrow n = 8,\dfrac{{ - 37}}{5} \\
$
We know the number of terms cannot be negative so we eliminate the negative value.
So, $n = 8$
Now, put the value of n in (1) equation.
$
\Rightarrow x = 5 \times 8 - 4 \\
\Rightarrow x = 40 - 4 \\
\Rightarrow x = 36 \\
$
So, the correct option is (a).
Note: Whenever we face such types of problems we use some important points. First we check which type of series formed then we apply the formula of nth term and sum of n terms then after some calculation we can get the required answer.
Complete step-by-step answer:
Given series, $1 + 6 + 11 + 16 + .......... + x = 148$
First we check type of series,
Common difference, d=6-1=11-6=16-11=5
So, We can see given series form an A.P with first term, a=1 and common difference, d=5.
Now, last term of an A.P is ${a_n} = x$ .So, we apply formula of nth term of an A.P $
{a_n} = a + \left( {n - 1} \right)d \\
\Rightarrow x = 1 + \left( {n - 1} \right)5 \\
\Rightarrow x = 1 + 5n - 5 \\
\Rightarrow x = 5n - 4..........\left( 1 \right) \\
$
Given, sum of n terms of an A.P ${S_n} = 148$ . So, we use the formula of sum of n terms of an A.P.
$
{S_n} = \dfrac{n}{2}\left( {2a + \left( {n - 1} \right)d} \right) \\
\Rightarrow 148 = \dfrac{n}{2}\left( {2 \times 1 + \left( {n - 1} \right) \times 5} \right) \\
\Rightarrow 296 = n\left( {5n - 3} \right) \\
\Rightarrow 5{n^2} - 3n - 296 = 0 \\
$
Now, factories the quadratic equation .
$
\Rightarrow \left( {n - 8} \right)\left( {5n + 37} \right) = 0 \\
\Rightarrow n = 8,\dfrac{{ - 37}}{5} \\
$
We know the number of terms cannot be negative so we eliminate the negative value.
So, $n = 8$
Now, put the value of n in (1) equation.
$
\Rightarrow x = 5 \times 8 - 4 \\
\Rightarrow x = 40 - 4 \\
\Rightarrow x = 36 \\
$
So, the correct option is (a).
Note: Whenever we face such types of problems we use some important points. First we check which type of series formed then we apply the formula of nth term and sum of n terms then after some calculation we can get the required answer.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
