
How do you solve ${{x}^{2}}-6x+25=0$?
Answer
540.3k+ views
Hint: We have been given a quadratic equation of $x$ as ${{x}^{2}}-6x+25=0$. We use the quadratic formula to solve the value of the $x$. we have the solution in the form of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ for general equation of $a{{x}^{2}}+bx+c=0$. We put the values and find the solution.
Complete step by step solution:
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of $x$ will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. This is the quadratic equation solving method. The root part $\sqrt{{{b}^{2}}-4ac}$ of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ is called the discriminant of the equation.
In the given equation we have ${{x}^{2}}-6x+25=0$. The values of a, b, c is $1,-6,25$ respectively.
We put the values and get $x$ as \[x=\dfrac{-\left( -6 \right)\pm \sqrt{{{\left( -6 \right)}^{2}}-4\times 25\times 1}}{2\times 1}=\dfrac{6\pm \sqrt{-64}}{2}=\dfrac{6\pm 8i}{2}=3\pm 4i\]
The roots of the equation are imaginary numbers. So, values of x are $x=3\pm 4i$.
The discriminant value being negative square, we get the imaginary numbers root values.
In this case the value of $D=\sqrt{{{b}^{2}}-4ac}$ is non-square. ${{b}^{2}}-4ac={{\left( -6 \right)}^{2}}-4\times 25\times 1=-64$.
This is a negative square value. That’s why the roots are imaginary.
Note: We have been given the equation ${{x}^{2}}-2x-4=0$. We form the square part in ${{x}^{2}}-6x+25$.
The square form of subtraction of two numbers be ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$.
We have ${{x}^{2}}-6x+25={{x}^{2}}-2\times x\times 3+{{3}^{2}}+16$.
Forming the square, we get ${{x}^{2}}-6x+25={{\left( x-3 \right)}^{2}}+{{4}^{2}}$.
We get ${{\left( x-3 \right)}^{2}}+{{4}^{2}}=0$. Taking solution, we get
$\begin{align}
& {{\left( x-3 \right)}^{2}}+{{4}^{2}}=0 \\
& \Rightarrow {{\left( x-3 \right)}^{2}}=-{{4}^{2}} \\
& \Rightarrow \left( x-3 \right)=\pm 4i \\
& \Rightarrow x=3\pm 4i \\
\end{align}$.
Thus, the solution of the equation ${{x}^{2}}-2x-4=0$ is $x=3\pm 4i$.
Complete step by step solution:
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of $x$ will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. This is the quadratic equation solving method. The root part $\sqrt{{{b}^{2}}-4ac}$ of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ is called the discriminant of the equation.
In the given equation we have ${{x}^{2}}-6x+25=0$. The values of a, b, c is $1,-6,25$ respectively.
We put the values and get $x$ as \[x=\dfrac{-\left( -6 \right)\pm \sqrt{{{\left( -6 \right)}^{2}}-4\times 25\times 1}}{2\times 1}=\dfrac{6\pm \sqrt{-64}}{2}=\dfrac{6\pm 8i}{2}=3\pm 4i\]
The roots of the equation are imaginary numbers. So, values of x are $x=3\pm 4i$.
The discriminant value being negative square, we get the imaginary numbers root values.
In this case the value of $D=\sqrt{{{b}^{2}}-4ac}$ is non-square. ${{b}^{2}}-4ac={{\left( -6 \right)}^{2}}-4\times 25\times 1=-64$.
This is a negative square value. That’s why the roots are imaginary.
Note: We have been given the equation ${{x}^{2}}-2x-4=0$. We form the square part in ${{x}^{2}}-6x+25$.
The square form of subtraction of two numbers be ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$.
We have ${{x}^{2}}-6x+25={{x}^{2}}-2\times x\times 3+{{3}^{2}}+16$.
Forming the square, we get ${{x}^{2}}-6x+25={{\left( x-3 \right)}^{2}}+{{4}^{2}}$.
We get ${{\left( x-3 \right)}^{2}}+{{4}^{2}}=0$. Taking solution, we get
$\begin{align}
& {{\left( x-3 \right)}^{2}}+{{4}^{2}}=0 \\
& \Rightarrow {{\left( x-3 \right)}^{2}}=-{{4}^{2}} \\
& \Rightarrow \left( x-3 \right)=\pm 4i \\
& \Rightarrow x=3\pm 4i \\
\end{align}$.
Thus, the solution of the equation ${{x}^{2}}-2x-4=0$ is $x=3\pm 4i$.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

