How do you solve ${{x}^{2}}-6x+25=0$?
Answer
Verified
435.9k+ views
Hint: We have been given a quadratic equation of $x$ as ${{x}^{2}}-6x+25=0$. We use the quadratic formula to solve the value of the $x$. we have the solution in the form of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ for general equation of $a{{x}^{2}}+bx+c=0$. We put the values and find the solution.
Complete step by step solution:
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of $x$ will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. This is the quadratic equation solving method. The root part $\sqrt{{{b}^{2}}-4ac}$ of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ is called the discriminant of the equation.
In the given equation we have ${{x}^{2}}-6x+25=0$. The values of a, b, c is $1,-6,25$ respectively.
We put the values and get $x$ as \[x=\dfrac{-\left( -6 \right)\pm \sqrt{{{\left( -6 \right)}^{2}}-4\times 25\times 1}}{2\times 1}=\dfrac{6\pm \sqrt{-64}}{2}=\dfrac{6\pm 8i}{2}=3\pm 4i\]
The roots of the equation are imaginary numbers. So, values of x are $x=3\pm 4i$.
The discriminant value being negative square, we get the imaginary numbers root values.
In this case the value of $D=\sqrt{{{b}^{2}}-4ac}$ is non-square. ${{b}^{2}}-4ac={{\left( -6 \right)}^{2}}-4\times 25\times 1=-64$.
This is a negative square value. That’s why the roots are imaginary.
Note: We have been given the equation ${{x}^{2}}-2x-4=0$. We form the square part in ${{x}^{2}}-6x+25$.
The square form of subtraction of two numbers be ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$.
We have ${{x}^{2}}-6x+25={{x}^{2}}-2\times x\times 3+{{3}^{2}}+16$.
Forming the square, we get ${{x}^{2}}-6x+25={{\left( x-3 \right)}^{2}}+{{4}^{2}}$.
We get ${{\left( x-3 \right)}^{2}}+{{4}^{2}}=0$. Taking solution, we get
$\begin{align}
& {{\left( x-3 \right)}^{2}}+{{4}^{2}}=0 \\
& \Rightarrow {{\left( x-3 \right)}^{2}}=-{{4}^{2}} \\
& \Rightarrow \left( x-3 \right)=\pm 4i \\
& \Rightarrow x=3\pm 4i \\
\end{align}$.
Thus, the solution of the equation ${{x}^{2}}-2x-4=0$ is $x=3\pm 4i$.
Complete step by step solution:
We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of $x$ will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$. This is the quadratic equation solving method. The root part $\sqrt{{{b}^{2}}-4ac}$ of $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$ is called the discriminant of the equation.
In the given equation we have ${{x}^{2}}-6x+25=0$. The values of a, b, c is $1,-6,25$ respectively.
We put the values and get $x$ as \[x=\dfrac{-\left( -6 \right)\pm \sqrt{{{\left( -6 \right)}^{2}}-4\times 25\times 1}}{2\times 1}=\dfrac{6\pm \sqrt{-64}}{2}=\dfrac{6\pm 8i}{2}=3\pm 4i\]
The roots of the equation are imaginary numbers. So, values of x are $x=3\pm 4i$.
The discriminant value being negative square, we get the imaginary numbers root values.
In this case the value of $D=\sqrt{{{b}^{2}}-4ac}$ is non-square. ${{b}^{2}}-4ac={{\left( -6 \right)}^{2}}-4\times 25\times 1=-64$.
This is a negative square value. That’s why the roots are imaginary.
Note: We have been given the equation ${{x}^{2}}-2x-4=0$. We form the square part in ${{x}^{2}}-6x+25$.
The square form of subtraction of two numbers be ${{\left( a-b \right)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}$.
We have ${{x}^{2}}-6x+25={{x}^{2}}-2\times x\times 3+{{3}^{2}}+16$.
Forming the square, we get ${{x}^{2}}-6x+25={{\left( x-3 \right)}^{2}}+{{4}^{2}}$.
We get ${{\left( x-3 \right)}^{2}}+{{4}^{2}}=0$. Taking solution, we get
$\begin{align}
& {{\left( x-3 \right)}^{2}}+{{4}^{2}}=0 \\
& \Rightarrow {{\left( x-3 \right)}^{2}}=-{{4}^{2}} \\
& \Rightarrow \left( x-3 \right)=\pm 4i \\
& \Rightarrow x=3\pm 4i \\
\end{align}$.
Thus, the solution of the equation ${{x}^{2}}-2x-4=0$ is $x=3\pm 4i$.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
What is Commercial Farming ? What are its types ? Explain them with Examples
List out three methods of soil conservation
Complete the following word chain of verbs Write eat class 10 english CBSE
Compare and contrast a weekly market and a shopping class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
On the outline map of India mark the following appropriately class 10 social science. CBSE