
How do you solve $\ln y=2t-3$ ?
Answer
468.6k+ views
Hint: We are given an equation in two variables which also includes a logarithmic function. Therefore, we will be solving it in two ways. The first method is to solve for t-variable which can be easily done by simply rearranging the given equation. In the second method, to solve for y-variable, we will deal with logarithms and use logarithmic properties.
Complete step by step answer:
We shall first solve for t-variable by making simple changes to the given equation, $\ln y=2t-3$ using basic algebra. Thus, we will add 3 on both sides of the given equation.
$\begin{align}
& \Rightarrow \ln y+3=2t-3+3 \\
& \Rightarrow \ln y+3=2t \\
\end{align}$
Now, dividing the entire equation by 2, we get
$\begin{align}
& \Rightarrow \dfrac{\ln y+3}{2}=\dfrac{2t}{2} \\
& \Rightarrow \dfrac{\ln y+3}{2}=t \\
\end{align}$
$\therefore t=\dfrac{\ln y+3}{2}$ ……………. Equation (1)
In order to solve for y-variable, we must have prior knowledge of logarithmic functions. We shall first exponentiate the given equation, $\ln y=2t-3$.
$\Rightarrow {{e}^{\ln y}}={{e}^{2t-3}}$
Also, we know that $\ln $ represents log function with base e. therefore, ln can be written as $\ln ={{\log }_{e}}$.
Thus, this implies that ${{e}^{{{\log }_{e}}y}}={{e}^{2t-3}}$.
Using this information and the property of logarithms, ${{a}^{{{\log }_{a}}b}}=b$, we get \[{{e}^{{{\log }_{e}}y}}=y~\].
$\Rightarrow y={{e}^{2t-3}}$
$\therefore y={{e}^{2t-3}}$ …………………. Equation (2)
From equations (1) and (2), we get $t=\dfrac{\ln y+3}{2}$ and $y={{e}^{2t-3}}$.
Therefore, the solution for t-variable is given as $t=\dfrac{\ln y+3}{2}$ and the solution for y-variable is given as $y={{e}^{2t-3}}$.
Note: Another method for solving for the y-variable was by directing taking the antilogarithm of base e on the right-hand side of the equation instead of exponentiating both the sides and then using the property of logarithmic functions. However, the usage of various properties makes the answer easy to understand and does not create any confusion.
Complete step by step answer:
We shall first solve for t-variable by making simple changes to the given equation, $\ln y=2t-3$ using basic algebra. Thus, we will add 3 on both sides of the given equation.
$\begin{align}
& \Rightarrow \ln y+3=2t-3+3 \\
& \Rightarrow \ln y+3=2t \\
\end{align}$
Now, dividing the entire equation by 2, we get
$\begin{align}
& \Rightarrow \dfrac{\ln y+3}{2}=\dfrac{2t}{2} \\
& \Rightarrow \dfrac{\ln y+3}{2}=t \\
\end{align}$
$\therefore t=\dfrac{\ln y+3}{2}$ ……………. Equation (1)
In order to solve for y-variable, we must have prior knowledge of logarithmic functions. We shall first exponentiate the given equation, $\ln y=2t-3$.
$\Rightarrow {{e}^{\ln y}}={{e}^{2t-3}}$
Also, we know that $\ln $ represents log function with base e. therefore, ln can be written as $\ln ={{\log }_{e}}$.
Thus, this implies that ${{e}^{{{\log }_{e}}y}}={{e}^{2t-3}}$.
Using this information and the property of logarithms, ${{a}^{{{\log }_{a}}b}}=b$, we get \[{{e}^{{{\log }_{e}}y}}=y~\].
$\Rightarrow y={{e}^{2t-3}}$
$\therefore y={{e}^{2t-3}}$ …………………. Equation (2)
From equations (1) and (2), we get $t=\dfrac{\ln y+3}{2}$ and $y={{e}^{2t-3}}$.
Therefore, the solution for t-variable is given as $t=\dfrac{\ln y+3}{2}$ and the solution for y-variable is given as $y={{e}^{2t-3}}$.
Note: Another method for solving for the y-variable was by directing taking the antilogarithm of base e on the right-hand side of the equation instead of exponentiating both the sides and then using the property of logarithmic functions. However, the usage of various properties makes the answer easy to understand and does not create any confusion.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Questions & Answers - Ask your doubts

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Science: Engaging Questions & Answers for Success

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Given that HCF 306 657 9 find the LCM 306 657 class 9 maths CBSE

The highest mountain peak in India is A Kanchenjunga class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Differentiate between the Western and the Eastern class 9 social science CBSE
