Answer
Verified
424.2k+ views
Hint: We are given an equation in two variables which also includes a logarithmic function. Therefore, we will be solving it in two ways. The first method is to solve for t-variable which can be easily done by simply rearranging the given equation. In the second method, to solve for y-variable, we will deal with logarithms and use logarithmic properties.
Complete step by step answer:
We shall first solve for t-variable by making simple changes to the given equation, $\ln y=2t-3$ using basic algebra. Thus, we will add 3 on both sides of the given equation.
$\begin{align}
& \Rightarrow \ln y+3=2t-3+3 \\
& \Rightarrow \ln y+3=2t \\
\end{align}$
Now, dividing the entire equation by 2, we get
$\begin{align}
& \Rightarrow \dfrac{\ln y+3}{2}=\dfrac{2t}{2} \\
& \Rightarrow \dfrac{\ln y+3}{2}=t \\
\end{align}$
$\therefore t=\dfrac{\ln y+3}{2}$ ……………. Equation (1)
In order to solve for y-variable, we must have prior knowledge of logarithmic functions. We shall first exponentiate the given equation, $\ln y=2t-3$.
$\Rightarrow {{e}^{\ln y}}={{e}^{2t-3}}$
Also, we know that $\ln $ represents log function with base e. therefore, ln can be written as $\ln ={{\log }_{e}}$.
Thus, this implies that ${{e}^{{{\log }_{e}}y}}={{e}^{2t-3}}$.
Using this information and the property of logarithms, ${{a}^{{{\log }_{a}}b}}=b$, we get \[{{e}^{{{\log }_{e}}y}}=y~\].
$\Rightarrow y={{e}^{2t-3}}$
$\therefore y={{e}^{2t-3}}$ …………………. Equation (2)
From equations (1) and (2), we get $t=\dfrac{\ln y+3}{2}$ and $y={{e}^{2t-3}}$.
Therefore, the solution for t-variable is given as $t=\dfrac{\ln y+3}{2}$ and the solution for y-variable is given as $y={{e}^{2t-3}}$.
Note: Another method for solving for the y-variable was by directing taking the antilogarithm of base e on the right-hand side of the equation instead of exponentiating both the sides and then using the property of logarithmic functions. However, the usage of various properties makes the answer easy to understand and does not create any confusion.
Complete step by step answer:
We shall first solve for t-variable by making simple changes to the given equation, $\ln y=2t-3$ using basic algebra. Thus, we will add 3 on both sides of the given equation.
$\begin{align}
& \Rightarrow \ln y+3=2t-3+3 \\
& \Rightarrow \ln y+3=2t \\
\end{align}$
Now, dividing the entire equation by 2, we get
$\begin{align}
& \Rightarrow \dfrac{\ln y+3}{2}=\dfrac{2t}{2} \\
& \Rightarrow \dfrac{\ln y+3}{2}=t \\
\end{align}$
$\therefore t=\dfrac{\ln y+3}{2}$ ……………. Equation (1)
In order to solve for y-variable, we must have prior knowledge of logarithmic functions. We shall first exponentiate the given equation, $\ln y=2t-3$.
$\Rightarrow {{e}^{\ln y}}={{e}^{2t-3}}$
Also, we know that $\ln $ represents log function with base e. therefore, ln can be written as $\ln ={{\log }_{e}}$.
Thus, this implies that ${{e}^{{{\log }_{e}}y}}={{e}^{2t-3}}$.
Using this information and the property of logarithms, ${{a}^{{{\log }_{a}}b}}=b$, we get \[{{e}^{{{\log }_{e}}y}}=y~\].
$\Rightarrow y={{e}^{2t-3}}$
$\therefore y={{e}^{2t-3}}$ …………………. Equation (2)
From equations (1) and (2), we get $t=\dfrac{\ln y+3}{2}$ and $y={{e}^{2t-3}}$.
Therefore, the solution for t-variable is given as $t=\dfrac{\ln y+3}{2}$ and the solution for y-variable is given as $y={{e}^{2t-3}}$.
Note: Another method for solving for the y-variable was by directing taking the antilogarithm of base e on the right-hand side of the equation instead of exponentiating both the sides and then using the property of logarithmic functions. However, the usage of various properties makes the answer easy to understand and does not create any confusion.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE