Answer
Verified
426k+ views
Hint: In this question, we have an equation. Which have two sides’ left-hand side and right-hand side. First we take the left hand side and solve it.to solve the left hand side we used a formula and formula is given as below.
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
By using the above formula we solve the left hand side, and then we write the left hand side is equal to the right hand side. After that we find the value of\[x\].
Complete step by step answer:
In this question we have given an equation that is,
\[{\left( {x - 3} \right)^2} = 36\]
First, we take the left hand side from the above equation and want to solve it.
Then, the left hand side is.
\[{\left( {x - 3} \right)^2}\]
We know that, \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Then above the left hand side is written as below.
\[
{\left( {x - 3} \right)^2} \\
= {x^2} + {3^2} - 2\times 3\times x \\
= {x^2} + 9 - 6x \\
\]
Now we write that the right left hand side is equal to the right hand side.
Then,
\[ \Rightarrow {x^2} + 9 - 6x = 36\]
We take \[36\] on the left hand side and on the right hand side.
Then,
Above equation is written as below.
\[ \Rightarrow {x^2} + 9 - 6x - 36 = 0\]
We solve the above equation.
\[{x^2} - 6x - 27 = 0\]
The above equation is a quadratic equation. We solve this equation for the value of\[x\].
Then,
\[
\Rightarrow {x^2} - 6x - 27 = 0 \\
\Rightarrow {x^2} + 3x - 9x - 27 = 0 \\
\]
We take the \[x\]is common in the first two and \[ - 9\]is common in the last two.
Then,
\[
x\left( {x + 3} \right) - 9\left( {x + 3} \right) = 0 \\
\left( {x + 3} \right)\left( {x - 9} \right) = 0 \\
\]
Then,
\[
x + 3 = 0 \\
\therefore x = - 3 \\
\]
And,
\[
x - 9 = 0 \\
\therefore x = 9 \\
\]
Therefore, the values of \[x\] are \[ - 3\] and \[9\].
Note:
In this question, an equation of \[x\] is given, which I want to solve. An equation is defined as it has two things which are equal. And the equation also likes a statement “this equal that”. The equation has two things or two sides, the left side is known as the left hand side and the right side is known as the right hand side. The left-hand side is denoted as “LHS” and the right hand side is denoted as “RHS”.
\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
By using the above formula we solve the left hand side, and then we write the left hand side is equal to the right hand side. After that we find the value of\[x\].
Complete step by step answer:
In this question we have given an equation that is,
\[{\left( {x - 3} \right)^2} = 36\]
First, we take the left hand side from the above equation and want to solve it.
Then, the left hand side is.
\[{\left( {x - 3} \right)^2}\]
We know that, \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Then above the left hand side is written as below.
\[
{\left( {x - 3} \right)^2} \\
= {x^2} + {3^2} - 2\times 3\times x \\
= {x^2} + 9 - 6x \\
\]
Now we write that the right left hand side is equal to the right hand side.
Then,
\[ \Rightarrow {x^2} + 9 - 6x = 36\]
We take \[36\] on the left hand side and on the right hand side.
Then,
Above equation is written as below.
\[ \Rightarrow {x^2} + 9 - 6x - 36 = 0\]
We solve the above equation.
\[{x^2} - 6x - 27 = 0\]
The above equation is a quadratic equation. We solve this equation for the value of\[x\].
Then,
\[
\Rightarrow {x^2} - 6x - 27 = 0 \\
\Rightarrow {x^2} + 3x - 9x - 27 = 0 \\
\]
We take the \[x\]is common in the first two and \[ - 9\]is common in the last two.
Then,
\[
x\left( {x + 3} \right) - 9\left( {x + 3} \right) = 0 \\
\left( {x + 3} \right)\left( {x - 9} \right) = 0 \\
\]
Then,
\[
x + 3 = 0 \\
\therefore x = - 3 \\
\]
And,
\[
x - 9 = 0 \\
\therefore x = 9 \\
\]
Therefore, the values of \[x\] are \[ - 3\] and \[9\].
Note:
In this question, an equation of \[x\] is given, which I want to solve. An equation is defined as it has two things which are equal. And the equation also likes a statement “this equal that”. The equation has two things or two sides, the left side is known as the left hand side and the right side is known as the right hand side. The left-hand side is denoted as “LHS” and the right hand side is denoted as “RHS”.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE