Answer
Verified
424.2k+ views
Hint:To find the value of r, just isolate the terms with respect to the variable asked i.e., here in this question we need to divide both sides of the expression by \[2\pi h\], hence by solving this we can get the expression of r.
Complete step by step answer:
The given expression is
\[s = 2\pi rh\]
As we need to solve for r, hence rewriting the given expression as
\[2\pi rh = s\]
Now divide both sides of the expression by \[2\pi h\]as
\[\dfrac{{2\pi rh}}{{2\pi h}} = \dfrac{s}{{2\pi h}}\]
The obtained expression consists of common terms i.e., 2 is common, hence by simplifying the terms we get
\[\dfrac{{\pi rh}}{{\pi h}} = \dfrac{s}{{2\pi h}}\]
The obtained expression consists of common terms i.e., \[\pi \] is common, hence by simplifying the terms we get
\[\dfrac{{rh}}{h} = \dfrac{s}{{2\pi h}}\]
The obtained expression consists of common terms i.e., h is common, hence by simplifying the terms we get
\[r = \dfrac{s}{{2\pi h}}\]
Therefore, the expression of r is \[r = \dfrac{s}{{2\pi h}}\]
Additional information: We have 4 ways of solving one-step equations: Adding, Subtracting, multiplication and division. If we add the same number to both sides of an equation, both sides will remain equal.
Note: The key point to find the value of variable asked is Isolate r on one side of the algebraic equation by subtracting the sum that appears on the same side of the equation as the r and that equals sign verifies the condition that the inherent value on the left is the same as the inherent value on the right. So, what you do to one side you also have to do to the right. Otherwise, one side is not the same value as the other.
Complete step by step answer:
The given expression is
\[s = 2\pi rh\]
As we need to solve for r, hence rewriting the given expression as
\[2\pi rh = s\]
Now divide both sides of the expression by \[2\pi h\]as
\[\dfrac{{2\pi rh}}{{2\pi h}} = \dfrac{s}{{2\pi h}}\]
The obtained expression consists of common terms i.e., 2 is common, hence by simplifying the terms we get
\[\dfrac{{\pi rh}}{{\pi h}} = \dfrac{s}{{2\pi h}}\]
The obtained expression consists of common terms i.e., \[\pi \] is common, hence by simplifying the terms we get
\[\dfrac{{rh}}{h} = \dfrac{s}{{2\pi h}}\]
The obtained expression consists of common terms i.e., h is common, hence by simplifying the terms we get
\[r = \dfrac{s}{{2\pi h}}\]
Therefore, the expression of r is \[r = \dfrac{s}{{2\pi h}}\]
Additional information: We have 4 ways of solving one-step equations: Adding, Subtracting, multiplication and division. If we add the same number to both sides of an equation, both sides will remain equal.
Note: The key point to find the value of variable asked is Isolate r on one side of the algebraic equation by subtracting the sum that appears on the same side of the equation as the r and that equals sign verifies the condition that the inherent value on the left is the same as the inherent value on the right. So, what you do to one side you also have to do to the right. Otherwise, one side is not the same value as the other.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
Why is monsoon considered a unifying bond class 10 social science CBSE
What makes elections in India democratic class 11 social science CBSE
What does the term Genocidal War refer to class 12 social science CBSE
A weight hangs freely from the end of a spring A boy class 11 physics CBSE