Answer
Verified
417.6k+ views
Hint: Here in this question, we have to solve this question. The given question is in the form of an exponential number. It is defined as the number of times the number is multiplied by itself. By using the definition of exponential number and the law of indices we are solving the given question.
Complete step-by-step solution:
The exponential number is defined as the number of times the number is multiplied by itself. Here we have to find the value of x. Consider the given equation
\[{4^{{x^2} + 4x}} = {2^{ - 6}}\]------- (1)
Here in the above equation the first term present in LHS of the equation are the multiples of 2.
The exponential form of 4 is written as \[{2^2}\] ---- (2)
Substitute the equation (2) in the equation (1). So the given equation is rewritten as
\[ \Rightarrow {2^{2({x^2} + 4x)}} = {2^{ - 6}}\]
Hence by simplifying the exponents of the above equation.
\[ \Rightarrow {2^{2{x^2} + 8x}} = {2^{ - 6}}\]
According to the properties of exponential numbers, if the value of the base is the same then we can equate the exponents. So we can write the above equation as
\[ \Rightarrow 2{x^2} + 8x = - 6\]
Take -6 to the LHS, the equation can be written as
\[ \Rightarrow 2{x^2} + 8x + 6 = 0\]
Divide the above equation by 2 we have
\[ \Rightarrow {x^2} + 4x + 3 = 0\]
The above equation is written as
\[ \Rightarrow {x^2} + 3x + x + 3 = 0\]
Take x as common from first two term and 1 as common from last terms so we have
\[ \Rightarrow x(x + 3) + 1(x + 3) = 0\]
Take (x+3) as common in the above equation we have
\[ \Rightarrow (x + 3)(x + 1) = 0\]
On simplification we have
\[ \Rightarrow (x + 3) = 0\] and \[(x + 1) = 0\]
Hence we have
\[ \Rightarrow x = - 3\] and \[x = - 1\]
Therefore, we have solved the given question.
Therefore \[x = - 3\] and \[x = - 1\]
Note: The exponential number is an inverse of the logarithmic function. To solve we can apply the log on both sides but here we have used the definition of the exponential number we convert the number to the exponential number. The law of indices is used to solve these kinds of problems.
Complete step-by-step solution:
The exponential number is defined as the number of times the number is multiplied by itself. Here we have to find the value of x. Consider the given equation
\[{4^{{x^2} + 4x}} = {2^{ - 6}}\]------- (1)
Here in the above equation the first term present in LHS of the equation are the multiples of 2.
The exponential form of 4 is written as \[{2^2}\] ---- (2)
Substitute the equation (2) in the equation (1). So the given equation is rewritten as
\[ \Rightarrow {2^{2({x^2} + 4x)}} = {2^{ - 6}}\]
Hence by simplifying the exponents of the above equation.
\[ \Rightarrow {2^{2{x^2} + 8x}} = {2^{ - 6}}\]
According to the properties of exponential numbers, if the value of the base is the same then we can equate the exponents. So we can write the above equation as
\[ \Rightarrow 2{x^2} + 8x = - 6\]
Take -6 to the LHS, the equation can be written as
\[ \Rightarrow 2{x^2} + 8x + 6 = 0\]
Divide the above equation by 2 we have
\[ \Rightarrow {x^2} + 4x + 3 = 0\]
The above equation is written as
\[ \Rightarrow {x^2} + 3x + x + 3 = 0\]
Take x as common from first two term and 1 as common from last terms so we have
\[ \Rightarrow x(x + 3) + 1(x + 3) = 0\]
Take (x+3) as common in the above equation we have
\[ \Rightarrow (x + 3)(x + 1) = 0\]
On simplification we have
\[ \Rightarrow (x + 3) = 0\] and \[(x + 1) = 0\]
Hence we have
\[ \Rightarrow x = - 3\] and \[x = - 1\]
Therefore, we have solved the given question.
Therefore \[x = - 3\] and \[x = - 1\]
Note: The exponential number is an inverse of the logarithmic function. To solve we can apply the log on both sides but here we have used the definition of the exponential number we convert the number to the exponential number. The law of indices is used to solve these kinds of problems.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE