Answer
Verified
406.5k+ views
Hint:Take out all the like terms to one side and all the alike terms to the other side. Take out all the common terms. Reduce the terms on the both sides until they cannot be reduced any further if possible. Then finally evaluate the value of the unknown variable. Solve both the inequalities separately.
Complete step by step answer:
First we will start off by evaluating the inequality $(x + 3)(x - 8)$.
Now we first start by opening the brackets and multiplying the terms.
$(x + 3)(x - 8) \\
\Rightarrow x(x) + x( - 8) + 3(x) + 3( - 8) $
Now we will simplify the terms.
$x(x) + x( - 8) + 3(x) + 3( - 8) \\
\Rightarrow {x^2} - 8x + 3x - 24 $
Now we combine all the like terms together.
${x^2} - 8x + 3x - 24 \\
\therefore{x^2} - 5x - 24 \\ $
Hence, the simplified form of the expression $(x + 3)(x - 8)$ is ${x^2} - 5x - 24$.
Additional Information:
To cross multiply terms, you will multiply the numerator in the first fraction times the denominator in the second fraction, then you write that number down. Then you multiply the numerator of the second fraction times the number in the denominator of your first fraction, and then you write that number down.
Note: While multiplying the terms, multiply the terms step-by-step to avoid any mistakes. After cross multiplication, take the variables to one side and integer type of terms to the other side. Reduce the terms by factorisation. Multiply the terms along with their signs as well.By Cross multiplication of fractions, we get to know if two fractions are equal or which one is greater. This is especially useful when you are working with larger fractions that you are not sure how to reduce. Cross multiplication also helps us to solve for unknown variables in fractions.
Complete step by step answer:
First we will start off by evaluating the inequality $(x + 3)(x - 8)$.
Now we first start by opening the brackets and multiplying the terms.
$(x + 3)(x - 8) \\
\Rightarrow x(x) + x( - 8) + 3(x) + 3( - 8) $
Now we will simplify the terms.
$x(x) + x( - 8) + 3(x) + 3( - 8) \\
\Rightarrow {x^2} - 8x + 3x - 24 $
Now we combine all the like terms together.
${x^2} - 8x + 3x - 24 \\
\therefore{x^2} - 5x - 24 \\ $
Hence, the simplified form of the expression $(x + 3)(x - 8)$ is ${x^2} - 5x - 24$.
Additional Information:
To cross multiply terms, you will multiply the numerator in the first fraction times the denominator in the second fraction, then you write that number down. Then you multiply the numerator of the second fraction times the number in the denominator of your first fraction, and then you write that number down.
Note: While multiplying the terms, multiply the terms step-by-step to avoid any mistakes. After cross multiplication, take the variables to one side and integer type of terms to the other side. Reduce the terms by factorisation. Multiply the terms along with their signs as well.By Cross multiplication of fractions, we get to know if two fractions are equal or which one is greater. This is especially useful when you are working with larger fractions that you are not sure how to reduce. Cross multiplication also helps us to solve for unknown variables in fractions.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE