Answer
Verified
418.2k+ views
Hint: Square root of a number is a value, which on multiplied by itself gives the original number. Suppose, ‘x’ is the square root of ‘y’, then it is represented as \[x = \sqrt y \] or we can express the same equation as \[{x^2} = y\]. Here we can see that 294 is not a perfect square. To solve this we factorize the given number.
Complete step-by-step solution:
Given,
\[\sqrt {567} \]
567 can be factorized as,
\[567 = 1 \times 3 \times 3 \times 3 \times 3 \times 7\]
We can see that 3 is multiplied twice two times, we multiply that we get,
\[567 = {3^2} \times {3^2} \times 7\].
Then,
\[ \Rightarrow \sqrt {567} = \sqrt {{3^2} \times {3^2} \times 7} \]
Now we know that square and square root will get cancel and we take term out the radical symbol,
\[ = 3 \times 3\sqrt 7 \]
\[ = 9\sqrt 7 \]. This is the exact form. We can stop here.
We also put it in the decimal form.
We know that \[\sqrt 7 = 2.645\] and multiplying this with 9 we get,
\[ = 9 \times 2.645\]
\[ = 23.81\]. This is the decimal form.
Note: Here \[\sqrt {} \] is the radical symbol used to represent the root of numbers. The number under the radical symbol is called radicand. The positive number, when multiplied by itself, represents the square of the number. The square root of the square of a positive number gives the original number. To find the factors, find the smallest prime number that divides the given number and divide it by that number, and then again find the smallest prime number that divides the number obtained and so on. The set of prime numbers obtained that are multiplied to each other to form the bigger number are called the factors.
Complete step-by-step solution:
Given,
\[\sqrt {567} \]
567 can be factorized as,
\[567 = 1 \times 3 \times 3 \times 3 \times 3 \times 7\]
We can see that 3 is multiplied twice two times, we multiply that we get,
\[567 = {3^2} \times {3^2} \times 7\].
Then,
\[ \Rightarrow \sqrt {567} = \sqrt {{3^2} \times {3^2} \times 7} \]
Now we know that square and square root will get cancel and we take term out the radical symbol,
\[ = 3 \times 3\sqrt 7 \]
\[ = 9\sqrt 7 \]. This is the exact form. We can stop here.
We also put it in the decimal form.
We know that \[\sqrt 7 = 2.645\] and multiplying this with 9 we get,
\[ = 9 \times 2.645\]
\[ = 23.81\]. This is the decimal form.
Note: Here \[\sqrt {} \] is the radical symbol used to represent the root of numbers. The number under the radical symbol is called radicand. The positive number, when multiplied by itself, represents the square of the number. The square root of the square of a positive number gives the original number. To find the factors, find the smallest prime number that divides the given number and divide it by that number, and then again find the smallest prime number that divides the number obtained and so on. The set of prime numbers obtained that are multiplied to each other to form the bigger number are called the factors.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Write the difference between order and molecularity class 11 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What are noble gases Why are they also called inert class 11 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between calcination and roasting class 11 chemistry CBSE