How do you simplify \[(9m + 10) \cdot 2?\]
Answer
Verified
438.3k+ views
Hint: We can solve the question by using the Distributive Property. This property tells us that if a mathematical expression is in the form of \[(a + b) \cdot c\], then multiplying each of the addends from the equation separately gives us the same answer as multiplying the sum of the numbers (within the bracket) by another number (outside the bracket).
Formula used: \[(a + b) \cdot c = ac + bc\]
Complete step-by-step solution:
The given mathematical expression is:
\[(9m + 10) \cdot 2\]
Distributive property says that multiplying each of the addends from the equation separately gives us the same answer as multiplying the sum of the numbers (within the bracket) by another number (outside the bracket). The formula for distributive property is:
\[(a + b) \cdot c = ac + bc\]
When we apply this property in our mathematical expression, then we get:
\[ = 9m \cdot 2 + 10 \cdot 2\]
Here, the brackets are opened and \[2\]is multiplied to both the numbers that were in the bracket.
Now, we will multiply both the term and get:
\[ = 18m + 20\]
\[ \Rightarrow (9m + 10) \cdot 2 = 18m + 20\]
This is our final answer. The simplified version of \[(9m + 10) \cdot 2\]is \[18m + 20\].
Note: Distributive property is also called distributive law of division and multiplication. We should make sure that we multiply the outside number with all the terms that are in the bracket. We usually first add the numbers inside the bracket and then multiply it with the outside term. But we should not do that. We should multiply each term that is inside the bracket with the outside number and then add all the terms. This is usually done when the two numbers inside the bracket cannot be added because they are not like terms.
Formula used: \[(a + b) \cdot c = ac + bc\]
Complete step-by-step solution:
The given mathematical expression is:
\[(9m + 10) \cdot 2\]
Distributive property says that multiplying each of the addends from the equation separately gives us the same answer as multiplying the sum of the numbers (within the bracket) by another number (outside the bracket). The formula for distributive property is:
\[(a + b) \cdot c = ac + bc\]
When we apply this property in our mathematical expression, then we get:
\[ = 9m \cdot 2 + 10 \cdot 2\]
Here, the brackets are opened and \[2\]is multiplied to both the numbers that were in the bracket.
Now, we will multiply both the term and get:
\[ = 18m + 20\]
\[ \Rightarrow (9m + 10) \cdot 2 = 18m + 20\]
This is our final answer. The simplified version of \[(9m + 10) \cdot 2\]is \[18m + 20\].
Note: Distributive property is also called distributive law of division and multiplication. We should make sure that we multiply the outside number with all the terms that are in the bracket. We usually first add the numbers inside the bracket and then multiply it with the outside term. But we should not do that. We should multiply each term that is inside the bracket with the outside number and then add all the terms. This is usually done when the two numbers inside the bracket cannot be added because they are not like terms.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The capital of British India was transferred from Calcutta class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE