
How do you simplify $4\sqrt {\dfrac{{81}}{{16}}} $.
Answer
564.9k+ views
Hint: We will first write the numerator and denominator separately in the form of squares. Then cut it with square root and multiply with 4 and thus we have the answer.
Complete step-by-step answer:
We need to simplify $4\sqrt {\dfrac{{81}}{{16}}} $. ………………(1)
We know that ${4^2} = 4 \times 4 = 16$ and ${9^2} = 9 \times 9 = 81$.
Since, we have $\sqrt {\dfrac{{81}}{{16}}} $ in the given expression which we require to simplify.
We can write this expression as: $\sqrt {\dfrac{{81}}{{16}}} = \sqrt {\dfrac{{{9^2}}}{{{4^2}}}} $ ……………..(2)
Now, we will make use of the fact that: $\dfrac{{{a^2}}}{{{b^2}}} = {\left( {\dfrac{a}{b}} \right)^2}$
On replacing a by 9 and b by 4, we get the following expression:-
$ \Rightarrow \dfrac{{{9^2}}}{{{4^2}}} = {\left( {\dfrac{9}{4}} \right)^2}$
Putting the above expression in the equation number (2), we will then obtain the following equation:-
\[ \Rightarrow \sqrt {\dfrac{{81}}{{16}}} = \sqrt {{{\left( {\dfrac{9}{4}} \right)}^2}} \] …………………..(3)
We also know that $\sqrt {{a^2}} = a$
On replacing a by $\dfrac{9}{4}$ in the above equation, we will then get the following equation:-
$ \Rightarrow \sqrt {{{\left( {\dfrac{9}{4}} \right)}^2}} = \dfrac{9}{4}$
Putting the above equation in the equation number (3), we will then obtain the following expression:-
\[ \Rightarrow \sqrt {\dfrac{{81}}{{16}}} = \dfrac{9}{4}\]
Putting the expression above in equation number (1), we will then obtain the following expression:-
$ \Rightarrow 4\sqrt {\dfrac{{81}}{{16}}} = 4 \times \dfrac{9}{4}$
Cutting off 4 from right hand side in above expression to get the following expression with us:-
$ \Rightarrow 4\sqrt {\dfrac{{81}}{{16}}} = 9$
Hence, we have $4\sqrt {\dfrac{{81}}{{16}}} $ simplified as 9.
Note:
The students must note that when we cut off 4 in the last third step it is because we know that 4 is not equal to 0.
The students must also note that when we open up square root, we have two possibilities, either a > 0 or a < 0. In general if nothing is given to us, we generally assume that a > 0 and thus we have the required answer as 9, otherwise it could have been -9 as well.
The students must note that the small things we use in the solution, sometimes we forget that they have a concept behind them like: $\dfrac{{{a^2}}}{{{b^2}}} = {\left( {\dfrac{a}{b}} \right)^2}$ and $\sqrt {{a^2}} = a$.
Complete step-by-step answer:
We need to simplify $4\sqrt {\dfrac{{81}}{{16}}} $. ………………(1)
We know that ${4^2} = 4 \times 4 = 16$ and ${9^2} = 9 \times 9 = 81$.
Since, we have $\sqrt {\dfrac{{81}}{{16}}} $ in the given expression which we require to simplify.
We can write this expression as: $\sqrt {\dfrac{{81}}{{16}}} = \sqrt {\dfrac{{{9^2}}}{{{4^2}}}} $ ……………..(2)
Now, we will make use of the fact that: $\dfrac{{{a^2}}}{{{b^2}}} = {\left( {\dfrac{a}{b}} \right)^2}$
On replacing a by 9 and b by 4, we get the following expression:-
$ \Rightarrow \dfrac{{{9^2}}}{{{4^2}}} = {\left( {\dfrac{9}{4}} \right)^2}$
Putting the above expression in the equation number (2), we will then obtain the following equation:-
\[ \Rightarrow \sqrt {\dfrac{{81}}{{16}}} = \sqrt {{{\left( {\dfrac{9}{4}} \right)}^2}} \] …………………..(3)
We also know that $\sqrt {{a^2}} = a$
On replacing a by $\dfrac{9}{4}$ in the above equation, we will then get the following equation:-
$ \Rightarrow \sqrt {{{\left( {\dfrac{9}{4}} \right)}^2}} = \dfrac{9}{4}$
Putting the above equation in the equation number (3), we will then obtain the following expression:-
\[ \Rightarrow \sqrt {\dfrac{{81}}{{16}}} = \dfrac{9}{4}\]
Putting the expression above in equation number (1), we will then obtain the following expression:-
$ \Rightarrow 4\sqrt {\dfrac{{81}}{{16}}} = 4 \times \dfrac{9}{4}$
Cutting off 4 from right hand side in above expression to get the following expression with us:-
$ \Rightarrow 4\sqrt {\dfrac{{81}}{{16}}} = 9$
Hence, we have $4\sqrt {\dfrac{{81}}{{16}}} $ simplified as 9.
Note:
The students must note that when we cut off 4 in the last third step it is because we know that 4 is not equal to 0.
The students must also note that when we open up square root, we have two possibilities, either a > 0 or a < 0. In general if nothing is given to us, we generally assume that a > 0 and thus we have the required answer as 9, otherwise it could have been -9 as well.
The students must note that the small things we use in the solution, sometimes we forget that they have a concept behind them like: $\dfrac{{{a^2}}}{{{b^2}}} = {\left( {\dfrac{a}{b}} \right)^2}$ and $\sqrt {{a^2}} = a$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

