Answer
Verified
409.8k+ views
Hint: In this problem we have to calculate the factors of the given equation. We can observe that the given equation is the cubic equation. Now we will consider the first two terms individually and take ${{x}^{2}}$ as common. After that we will consider the last two terms and take $-2$ as common. Now we will observe the obtained equation and take appropriate terms as common to get the factors of the given equation.
Complete step by step answer:
Given equation, ${{x}^{3}}+3{{x}^{2}}-2x-6$.
Considering the first two terms. We have the first term ${{x}^{3}}$ and the second term $3{{x}^{2}}$. By observing the above two terms we can take ${{x}^{2}}$ as common. So, taking ${{x}^{2}}$ as common from the first two terms of the given equation, then we will get
$\Rightarrow {{x}^{3}}+3{{x}^{2}}-2x-6={{x}^{2}}\left( x+3 \right)-2x-6$
Considering the last two terms of the given equation. We have last term $-6$ and the third term $-2x$. By observing the above two terms we can take $-2$ as common. So, taking $-2$ as common from the last two terms of the given equation, then we will get
$\Rightarrow {{x}^{3}}+3{{x}^{2}}-2x-6={{x}^{2}}\left( x+3 \right)-2\left( x+3 \right)$
In the above equation we can observe that we can take $x+3$ as common. So, taking $x+3$ as common from the above equation, then we will get
$\Rightarrow {{x}^{3}}+3{{x}^{2}}-2x-6=\left( x+3 \right)\left( {{x}^{2}}-2 \right)$
Hence the factors of the given equation ${{x}^{3}}+3{{x}^{2}}-2x-6$ are ${{x}^{2}}-2$, $x+3$.
Note: In the given equation we have the common factors of the terms in the equation, so we have taken common from the terms and simplify them to get the factors. But in some cases, we don’t have any common factors for the terms in the equation, then the above used method is not applicable. Then we will consider the given polynomial as a function and we will calculate the value of $x$ where $f\left( x \right)=0$ by substituting the random values of $x$. After getting the value of $x$ as $x=a$ we will divide the given equation with $x-a$. Then we will get a quadratic equation as a quotient. Now we will factorise the quadratic equation to get another two factors. After finding the factors of the quadratic equation, the factors of the given cubic polynomial are $x-a$, the factors of the quadratic equation.
Complete step by step answer:
Given equation, ${{x}^{3}}+3{{x}^{2}}-2x-6$.
Considering the first two terms. We have the first term ${{x}^{3}}$ and the second term $3{{x}^{2}}$. By observing the above two terms we can take ${{x}^{2}}$ as common. So, taking ${{x}^{2}}$ as common from the first two terms of the given equation, then we will get
$\Rightarrow {{x}^{3}}+3{{x}^{2}}-2x-6={{x}^{2}}\left( x+3 \right)-2x-6$
Considering the last two terms of the given equation. We have last term $-6$ and the third term $-2x$. By observing the above two terms we can take $-2$ as common. So, taking $-2$ as common from the last two terms of the given equation, then we will get
$\Rightarrow {{x}^{3}}+3{{x}^{2}}-2x-6={{x}^{2}}\left( x+3 \right)-2\left( x+3 \right)$
In the above equation we can observe that we can take $x+3$ as common. So, taking $x+3$ as common from the above equation, then we will get
$\Rightarrow {{x}^{3}}+3{{x}^{2}}-2x-6=\left( x+3 \right)\left( {{x}^{2}}-2 \right)$
Hence the factors of the given equation ${{x}^{3}}+3{{x}^{2}}-2x-6$ are ${{x}^{2}}-2$, $x+3$.
Note: In the given equation we have the common factors of the terms in the equation, so we have taken common from the terms and simplify them to get the factors. But in some cases, we don’t have any common factors for the terms in the equation, then the above used method is not applicable. Then we will consider the given polynomial as a function and we will calculate the value of $x$ where $f\left( x \right)=0$ by substituting the random values of $x$. After getting the value of $x$ as $x=a$ we will divide the given equation with $x-a$. Then we will get a quadratic equation as a quotient. Now we will factorise the quadratic equation to get another two factors. After finding the factors of the quadratic equation, the factors of the given cubic polynomial are $x-a$, the factors of the quadratic equation.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell