
How do you factor $ 9{{x}^{2}}-25 $ ?
Answer
551.1k+ views
Hint:
We first try to explain the concept of factorisation and the ways a factorisation of a polynomial can be done. We use the identity theorem of $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ to factor the given polynomial $ 9{{x}^{2}}-25 $ . We assume the values of $ a=3x;b=5 $ . The final multiplied linear polynomials are the solution of the problem.
Complete step by step answer:
The main condition of factorization is to break the given number or function or polynomial into multiple of basic primary numbers or polynomials.
For the process of factorisation, we use the concept of common elements or identities to convert into multiplication form.
For the factorisation of the given quadratic polynomial $ 9{{x}^{2}}-25 $ , we apply the factorisation identity of difference of two squares as $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ .
We get $ 9{{x}^{2}}-25={{\left( 3x \right)}^{2}}-{{5}^{2}} $ . We put the value of $ a=3x;b=5 $ .
Factorisation of the polynomial gives us
$ 9{{x}^{2}}-25={{\left( 3x \right)}^{2}}-{{5}^{2}}=\left( 3x+5 \right)\left( 3x-5 \right) $ .
These two multiplied linear polynomials can’t be broken anymore.
Therefore, the final factorisation of $ 9{{x}^{2}}-25 $ is $ \left( 3x+5 \right)\left( 3x-5 \right) $ .
Note:
The formula of $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ derives from the solution identity of
\[\begin{align}
& {{a}^{2}}-{{b}^{2}} \\
& ={{a}^{2}}-ab+ab-{{b}^{2}} \\
& =a\left( a-b \right)+b\left( a-b \right) \\
& =\left( a+b \right)\left( a-b \right) \\
\end{align}\]
We first try to explain the concept of factorisation and the ways a factorisation of a polynomial can be done. We use the identity theorem of $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ to factor the given polynomial $ 9{{x}^{2}}-25 $ . We assume the values of $ a=3x;b=5 $ . The final multiplied linear polynomials are the solution of the problem.
Complete step by step answer:
The main condition of factorization is to break the given number or function or polynomial into multiple of basic primary numbers or polynomials.
For the process of factorisation, we use the concept of common elements or identities to convert into multiplication form.
For the factorisation of the given quadratic polynomial $ 9{{x}^{2}}-25 $ , we apply the factorisation identity of difference of two squares as $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ .
We get $ 9{{x}^{2}}-25={{\left( 3x \right)}^{2}}-{{5}^{2}} $ . We put the value of $ a=3x;b=5 $ .
Factorisation of the polynomial gives us
$ 9{{x}^{2}}-25={{\left( 3x \right)}^{2}}-{{5}^{2}}=\left( 3x+5 \right)\left( 3x-5 \right) $ .
These two multiplied linear polynomials can’t be broken anymore.
Therefore, the final factorisation of $ 9{{x}^{2}}-25 $ is $ \left( 3x+5 \right)\left( 3x-5 \right) $ .
Note:
The formula of $ {{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right) $ derives from the solution identity of
\[\begin{align}
& {{a}^{2}}-{{b}^{2}} \\
& ={{a}^{2}}-ab+ab-{{b}^{2}} \\
& =a\left( a-b \right)+b\left( a-b \right) \\
& =\left( a+b \right)\left( a-b \right) \\
\end{align}\]
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

