Answer
Verified
408.3k+ views
Hint: We are given \[6{{x}^{2}}-11x+4,\] and ,we are asked to find the factor form of this. To do so we will first understand the type of equation we have, once we get that we will find the greatest common factor from each term then in the remaining term be factor using the middle term. We use \[a\times b\] in such a way that its sum or difference from the ‘b’ of the equation \[a{{x}^{2}}+bx+c.\] Once we split that we will unite all factors of the equation and we get our required answer.
Complete step-by-step solution:
We are given \[6{{x}^{2}}-11x+4\] and we are asked to find the factor of it. To find the factor of the equation, we should see that as the highest power is 2 so it is 2 degree polynomial. So it is a quadratic equation. Now, to factor, we will first find the possible greatest common factor of all these. In 6, – 11 and 4, we can see that there is no common term to each of these terms. So we cannot separate anything out of this. Now we will use the middle term to split. In middle term split apply on \[a{{x}^{2}}+bx+c,\] we produce ‘a’ by ‘c’ and then factor ‘ac’ in such a way that if the product is ‘ac’ while the sum or difference is made up to ‘b’. Now we have a middle term on \[{{x}^{2}}+13x+12.\] We have a = 5, b = – 11 and c = 4. So, we use these values to find two terms which help us in splitting the middle term. Now we can see that,
\[a\times c=6\times 4=24\]
We can see that there are two terms – 8 and – 3 such that \[-8\times -3=24\left[ \text{same as }a\times c \right]\] and \[-8+\left( -3 \right)=-8-3=-11.\] So, we use this to split the middle term. So \[6{{x}^{2}}-11x+4\] becomes
\[\Rightarrow 6{{x}^{2}}+\left( -8-3 \right)x+4\]
Opening the brackets
\[\Rightarrow 6{{x}^{2}}-8x-3x+4\]
We take common in the first 2 terms and the last 2 terms. So we get
\[\Rightarrow 2x\left( 3x-4 \right)-1\left( 3x-4 \right)\]
As (3x – 4) is the same, so we get,
\[\Rightarrow \left( 2x-1 \right)\left( 3x-4 \right)\]
So, we get,
\[\Rightarrow 6{{x}^{2}}-11x+4=\left( 2x-1 \right)\left( 3x-4 \right)\]
So, the factored form of \[6{{x}^{2}}-11x+4\] is \[\left( 2x-1 \right)\left( 3x-4 \right).\]
Note: While finding the middle term using a factor of \[a\times c,\] we need to keep in mind that when the sign of ‘a’ and ‘c’ are the same then ‘b’ is obtained by addition only, if the sign of ‘a’ and ‘c’ are different then ‘b’ can be obtained using only subtraction. So, as we have a = 6 and c = 4 have the same sign so ‘b’ is obtained as – 8 + (– 3) by addition of – 8 and – 3. We can always cross-check that. Product of \[\left( 2x-1 \right)\left( 3x-4 \right)=2x\left( 3x-4 \right)-1\left( 3x-4 \right)\] on simplifying we get \[6{{x}^{2}}-8x-3x+4.\] Adding the like terms, we get \[6{{x}^{2}}-11x+4.\] So, our factors are correct.
Complete step-by-step solution:
We are given \[6{{x}^{2}}-11x+4\] and we are asked to find the factor of it. To find the factor of the equation, we should see that as the highest power is 2 so it is 2 degree polynomial. So it is a quadratic equation. Now, to factor, we will first find the possible greatest common factor of all these. In 6, – 11 and 4, we can see that there is no common term to each of these terms. So we cannot separate anything out of this. Now we will use the middle term to split. In middle term split apply on \[a{{x}^{2}}+bx+c,\] we produce ‘a’ by ‘c’ and then factor ‘ac’ in such a way that if the product is ‘ac’ while the sum or difference is made up to ‘b’. Now we have a middle term on \[{{x}^{2}}+13x+12.\] We have a = 5, b = – 11 and c = 4. So, we use these values to find two terms which help us in splitting the middle term. Now we can see that,
\[a\times c=6\times 4=24\]
We can see that there are two terms – 8 and – 3 such that \[-8\times -3=24\left[ \text{same as }a\times c \right]\] and \[-8+\left( -3 \right)=-8-3=-11.\] So, we use this to split the middle term. So \[6{{x}^{2}}-11x+4\] becomes
\[\Rightarrow 6{{x}^{2}}+\left( -8-3 \right)x+4\]
Opening the brackets
\[\Rightarrow 6{{x}^{2}}-8x-3x+4\]
We take common in the first 2 terms and the last 2 terms. So we get
\[\Rightarrow 2x\left( 3x-4 \right)-1\left( 3x-4 \right)\]
As (3x – 4) is the same, so we get,
\[\Rightarrow \left( 2x-1 \right)\left( 3x-4 \right)\]
So, we get,
\[\Rightarrow 6{{x}^{2}}-11x+4=\left( 2x-1 \right)\left( 3x-4 \right)\]
So, the factored form of \[6{{x}^{2}}-11x+4\] is \[\left( 2x-1 \right)\left( 3x-4 \right).\]
Note: While finding the middle term using a factor of \[a\times c,\] we need to keep in mind that when the sign of ‘a’ and ‘c’ are the same then ‘b’ is obtained by addition only, if the sign of ‘a’ and ‘c’ are different then ‘b’ can be obtained using only subtraction. So, as we have a = 6 and c = 4 have the same sign so ‘b’ is obtained as – 8 + (– 3) by addition of – 8 and – 3. We can always cross-check that. Product of \[\left( 2x-1 \right)\left( 3x-4 \right)=2x\left( 3x-4 \right)-1\left( 3x-4 \right)\] on simplifying we get \[6{{x}^{2}}-8x-3x+4.\] Adding the like terms, we get \[6{{x}^{2}}-11x+4.\] So, our factors are correct.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell