Answer
Verified
425.7k+ views
Hint: A polynomial of degree two is called a quadratic polynomial and its zeros can be found using many methods like factorization, completing the square, graphs, quadratic formula etc. The quadratic formula is used when we fail to find the factors of the equation. If factors are difficult to find then we use Sridhar’s formula to find the roots. That is \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Complete step-by-step solution:
Given, \[2{x^2} + 8x + 8 = 0\]
Since the degree of the equation is 2, we have 2 factors.
On comparing the given equation with the standard quadratic equation\[a{x^2} + bx + c = 0\], we have\[a = 2\], \[b = 8\] and \[c = 8\].
The standard form of the factorization of quadratic equation is \[a{x^2} + {b_1}x + {b_2}x + c = 0\], which satisfies the condition \[{b_1} \times {b_2} = a \times c\] and \[{b_1} + {b_2} = b\].
We can write the given equation as \[2{x^2} + 4x + 4x + 8 = 0\], where \[{b_1} = 4\] and \[{b_2} = 4\]. Also \[{b_1} \times {b_2} = 4 \times 4 = 16(ac)\] and \[{b_1} + {b_2} = 4 + 4 = 8(b)\].
Thus we have,
\[ \Rightarrow 2{x^2} + 8x + 8 = 2{x^2} + 4x + 4x + 8\]
\[ = 2{x^2} + 4x + 4x + 8\]
Taking ‘2x’ common in the first two terms and taking 4 common in the remaining two terms we have,
\[ = 2x\left( {x + 2} \right) + 4(x + 2)\]
Again taking \[\left( {x + 2} \right)\] common we have,
\[ = \left( {x + 2} \right)\left( {x + 2} \right)\]
Hence the factors of \[2{x^2} - 6x + 4 = 0\] are \[\left( {x + 2} \right)\] and \[\left( {x + 2} \right)\].
(We can also find the roots of the given quadratic equation by equating the obtained factors to zero. That is
\[\left( {x + 2} \right)\left( {x + 2} \right) = 0\]
By zero product principle we have,
\[\left( {x + 2} \right) = 0\] or \[\left( {x + 2} \right) = 0\]
\[x = - 2\] or \[x = - 2\]these are the roots)
Note: We can easily solve this if we know some idea of algebraic identity,
\[2{x^2} + 8x + 8 = 0\]
We can divide the whole equation by 2, to make it simple
\[{x^2} + 4x + 4 = 0\]
But we know \[{(a + b)^2} = {a^2} + 2ab + {b^2}\], applying this we have,
\[{(x + 2)^2} = 0\]
Hence the factors of \[2{x^2} - 6x + 4 = 0\] are \[\left( {x + 2} \right)\] and \[\left( {x + 2} \right)\]
These are the roots of the given polynomial of degree 2. In above, if we are unable to expand the middle term of the given equation into a sum of two numbers then we use a quadratic formula to solve the given problem. Quadratic formula and Sridhar’s formula are both the same. Careful in the calculation part.
Complete step-by-step solution:
Given, \[2{x^2} + 8x + 8 = 0\]
Since the degree of the equation is 2, we have 2 factors.
On comparing the given equation with the standard quadratic equation\[a{x^2} + bx + c = 0\], we have\[a = 2\], \[b = 8\] and \[c = 8\].
The standard form of the factorization of quadratic equation is \[a{x^2} + {b_1}x + {b_2}x + c = 0\], which satisfies the condition \[{b_1} \times {b_2} = a \times c\] and \[{b_1} + {b_2} = b\].
We can write the given equation as \[2{x^2} + 4x + 4x + 8 = 0\], where \[{b_1} = 4\] and \[{b_2} = 4\]. Also \[{b_1} \times {b_2} = 4 \times 4 = 16(ac)\] and \[{b_1} + {b_2} = 4 + 4 = 8(b)\].
Thus we have,
\[ \Rightarrow 2{x^2} + 8x + 8 = 2{x^2} + 4x + 4x + 8\]
\[ = 2{x^2} + 4x + 4x + 8\]
Taking ‘2x’ common in the first two terms and taking 4 common in the remaining two terms we have,
\[ = 2x\left( {x + 2} \right) + 4(x + 2)\]
Again taking \[\left( {x + 2} \right)\] common we have,
\[ = \left( {x + 2} \right)\left( {x + 2} \right)\]
Hence the factors of \[2{x^2} - 6x + 4 = 0\] are \[\left( {x + 2} \right)\] and \[\left( {x + 2} \right)\].
(We can also find the roots of the given quadratic equation by equating the obtained factors to zero. That is
\[\left( {x + 2} \right)\left( {x + 2} \right) = 0\]
By zero product principle we have,
\[\left( {x + 2} \right) = 0\] or \[\left( {x + 2} \right) = 0\]
\[x = - 2\] or \[x = - 2\]these are the roots)
Note: We can easily solve this if we know some idea of algebraic identity,
\[2{x^2} + 8x + 8 = 0\]
We can divide the whole equation by 2, to make it simple
\[{x^2} + 4x + 4 = 0\]
But we know \[{(a + b)^2} = {a^2} + 2ab + {b^2}\], applying this we have,
\[{(x + 2)^2} = 0\]
Hence the factors of \[2{x^2} - 6x + 4 = 0\] are \[\left( {x + 2} \right)\] and \[\left( {x + 2} \right)\]
These are the roots of the given polynomial of degree 2. In above, if we are unable to expand the middle term of the given equation into a sum of two numbers then we use a quadratic formula to solve the given problem. Quadratic formula and Sridhar’s formula are both the same. Careful in the calculation part.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE