
How do you factor \[2{x^2} + 8x + 8 = 0\]?
Answer
541.2k+ views
Hint: A polynomial of degree two is called a quadratic polynomial and its zeros can be found using many methods like factorization, completing the square, graphs, quadratic formula etc. The quadratic formula is used when we fail to find the factors of the equation. If factors are difficult to find then we use Sridhar’s formula to find the roots. That is \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\].
Complete step-by-step solution:
Given, \[2{x^2} + 8x + 8 = 0\]
Since the degree of the equation is 2, we have 2 factors.
On comparing the given equation with the standard quadratic equation\[a{x^2} + bx + c = 0\], we have\[a = 2\], \[b = 8\] and \[c = 8\].
The standard form of the factorization of quadratic equation is \[a{x^2} + {b_1}x + {b_2}x + c = 0\], which satisfies the condition \[{b_1} \times {b_2} = a \times c\] and \[{b_1} + {b_2} = b\].
We can write the given equation as \[2{x^2} + 4x + 4x + 8 = 0\], where \[{b_1} = 4\] and \[{b_2} = 4\]. Also \[{b_1} \times {b_2} = 4 \times 4 = 16(ac)\] and \[{b_1} + {b_2} = 4 + 4 = 8(b)\].
Thus we have,
\[ \Rightarrow 2{x^2} + 8x + 8 = 2{x^2} + 4x + 4x + 8\]
\[ = 2{x^2} + 4x + 4x + 8\]
Taking ‘2x’ common in the first two terms and taking 4 common in the remaining two terms we have,
\[ = 2x\left( {x + 2} \right) + 4(x + 2)\]
Again taking \[\left( {x + 2} \right)\] common we have,
\[ = \left( {x + 2} \right)\left( {x + 2} \right)\]
Hence the factors of \[2{x^2} - 6x + 4 = 0\] are \[\left( {x + 2} \right)\] and \[\left( {x + 2} \right)\].
(We can also find the roots of the given quadratic equation by equating the obtained factors to zero. That is
\[\left( {x + 2} \right)\left( {x + 2} \right) = 0\]
By zero product principle we have,
\[\left( {x + 2} \right) = 0\] or \[\left( {x + 2} \right) = 0\]
\[x = - 2\] or \[x = - 2\]these are the roots)
Note: We can easily solve this if we know some idea of algebraic identity,
\[2{x^2} + 8x + 8 = 0\]
We can divide the whole equation by 2, to make it simple
\[{x^2} + 4x + 4 = 0\]
But we know \[{(a + b)^2} = {a^2} + 2ab + {b^2}\], applying this we have,
\[{(x + 2)^2} = 0\]
Hence the factors of \[2{x^2} - 6x + 4 = 0\] are \[\left( {x + 2} \right)\] and \[\left( {x + 2} \right)\]
These are the roots of the given polynomial of degree 2. In above, if we are unable to expand the middle term of the given equation into a sum of two numbers then we use a quadratic formula to solve the given problem. Quadratic formula and Sridhar’s formula are both the same. Careful in the calculation part.
Complete step-by-step solution:
Given, \[2{x^2} + 8x + 8 = 0\]
Since the degree of the equation is 2, we have 2 factors.
On comparing the given equation with the standard quadratic equation\[a{x^2} + bx + c = 0\], we have\[a = 2\], \[b = 8\] and \[c = 8\].
The standard form of the factorization of quadratic equation is \[a{x^2} + {b_1}x + {b_2}x + c = 0\], which satisfies the condition \[{b_1} \times {b_2} = a \times c\] and \[{b_1} + {b_2} = b\].
We can write the given equation as \[2{x^2} + 4x + 4x + 8 = 0\], where \[{b_1} = 4\] and \[{b_2} = 4\]. Also \[{b_1} \times {b_2} = 4 \times 4 = 16(ac)\] and \[{b_1} + {b_2} = 4 + 4 = 8(b)\].
Thus we have,
\[ \Rightarrow 2{x^2} + 8x + 8 = 2{x^2} + 4x + 4x + 8\]
\[ = 2{x^2} + 4x + 4x + 8\]
Taking ‘2x’ common in the first two terms and taking 4 common in the remaining two terms we have,
\[ = 2x\left( {x + 2} \right) + 4(x + 2)\]
Again taking \[\left( {x + 2} \right)\] common we have,
\[ = \left( {x + 2} \right)\left( {x + 2} \right)\]
Hence the factors of \[2{x^2} - 6x + 4 = 0\] are \[\left( {x + 2} \right)\] and \[\left( {x + 2} \right)\].
(We can also find the roots of the given quadratic equation by equating the obtained factors to zero. That is
\[\left( {x + 2} \right)\left( {x + 2} \right) = 0\]
By zero product principle we have,
\[\left( {x + 2} \right) = 0\] or \[\left( {x + 2} \right) = 0\]
\[x = - 2\] or \[x = - 2\]these are the roots)
Note: We can easily solve this if we know some idea of algebraic identity,
\[2{x^2} + 8x + 8 = 0\]
We can divide the whole equation by 2, to make it simple
\[{x^2} + 4x + 4 = 0\]
But we know \[{(a + b)^2} = {a^2} + 2ab + {b^2}\], applying this we have,
\[{(x + 2)^2} = 0\]
Hence the factors of \[2{x^2} - 6x + 4 = 0\] are \[\left( {x + 2} \right)\] and \[\left( {x + 2} \right)\]
These are the roots of the given polynomial of degree 2. In above, if we are unable to expand the middle term of the given equation into a sum of two numbers then we use a quadratic formula to solve the given problem. Quadratic formula and Sridhar’s formula are both the same. Careful in the calculation part.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the missing number in the sequence 259142027 class 10 maths CBSE

10 examples of evaporation in daily life with explanations

What is the full form of POSCO class 10 social science CBSE

What are the public facilities provided by the government? Also explain each facility

