Answer
Verified
389.4k+ views
Hint: To solve the question we need to have the knowledge of Mensuration more precisely know the area of the rectangle. The formula for the area of a rectangle is the product of length and breadth of the rectangle. $A=l\times b$. We will be putting the condition on the formula and checking the dependencies of the values on the area of the rectangle.
Complete step by step answer:
The question asks us to find the change in the area of the rectangle, if the condition for the length and the breadth changes as length is halved and breadth is doubled. We know that the area of the rectangle is:
$\text{Area = length }\!\!\times\!\!\text{ breadth}$
Consider the original length and the breadth if the rectangle be $l$ and $b$ respectively. Soo the area thus become as:
$\Rightarrow A=l\times b$
Now, applying the condition given the new length and the breadth of the rectangle becomes $\dfrac{l}{2}$ and $2b$ respectively. The area we get on putting the values in the formula of the area of the rectangle we get:
$\Rightarrow A'=\dfrac{l}{2}\times 2b$
On calculating the above expression we get:
$\Rightarrow A'=\dfrac{2lb}{2}$
Since the number $2$ is common in both the numerator and the denominator so the number gets cancelled. So on changing the fraction in the lowest term we get:
$\Rightarrow A'=lb$
Since $A=A'$ , so the area of the rectangle remains the same on changing the dimensions in the given order.
$\therefore $ The area of the rectangle remains the same when length is halved and breadth is doubled.
Note: The above solution will be for the case of the area of the rectangle when dimensions are changed. The question may ask us to state the change in the perimeter of the rectangle. So for that case we will take the formula for the perimeter which is $2\left( l+b \right)$. On checking the change in the perimeter by changing in the dimensions of the rectangle in the same way as given in the question then we see that new perimeter is
$\Rightarrow 2\left( \dfrac{l}{2}+2b \right)$
$\Rightarrow 2\left( \dfrac{l+4b}{2} \right)$
$\Rightarrow l+4b$
So the new perimeter changes to $l+4b$.
Complete step by step answer:
The question asks us to find the change in the area of the rectangle, if the condition for the length and the breadth changes as length is halved and breadth is doubled. We know that the area of the rectangle is:
$\text{Area = length }\!\!\times\!\!\text{ breadth}$
Consider the original length and the breadth if the rectangle be $l$ and $b$ respectively. Soo the area thus become as:
$\Rightarrow A=l\times b$
Now, applying the condition given the new length and the breadth of the rectangle becomes $\dfrac{l}{2}$ and $2b$ respectively. The area we get on putting the values in the formula of the area of the rectangle we get:
$\Rightarrow A'=\dfrac{l}{2}\times 2b$
On calculating the above expression we get:
$\Rightarrow A'=\dfrac{2lb}{2}$
Since the number $2$ is common in both the numerator and the denominator so the number gets cancelled. So on changing the fraction in the lowest term we get:
$\Rightarrow A'=lb$
Since $A=A'$ , so the area of the rectangle remains the same on changing the dimensions in the given order.
$\therefore $ The area of the rectangle remains the same when length is halved and breadth is doubled.
Note: The above solution will be for the case of the area of the rectangle when dimensions are changed. The question may ask us to state the change in the perimeter of the rectangle. So for that case we will take the formula for the perimeter which is $2\left( l+b \right)$. On checking the change in the perimeter by changing in the dimensions of the rectangle in the same way as given in the question then we see that new perimeter is
$\Rightarrow 2\left( \dfrac{l}{2}+2b \right)$
$\Rightarrow 2\left( \dfrac{l+4b}{2} \right)$
$\Rightarrow l+4b$
So the new perimeter changes to $l+4b$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Discuss the main reasons for poverty in India
A Paragraph on Pollution in about 100-150 Words
Why is monsoon considered a unifying bond class 10 social science CBSE
What makes elections in India democratic class 11 social science CBSE
What does the term Genocidal War refer to class 12 social science CBSE
A weight hangs freely from the end of a spring A boy class 11 physics CBSE