
Given $\log 6$ and $\log 8$,then the only logarithm that cannot be obtained without using the table is
A.$\log 64$
B.$\log 21$
C.$\log \dfrac{8}{3}$
D.$\log 9$
Answer
602.1k+ views
Hint: We need to evaluate each part using logarithmic properties and the given log values.
Complete step-by-step answer:
Given the values of $\log 6$ and $\log 8$. We need to find the values of another logarithm using them.
Let us assume, $y = \log 6$
We know that,$\log \left( {a \times b} \right) = \log a + \log b$.
Using this in above, we get
$y = \log \left( {2 \times 3} \right) = \log 2 + \log 3$ ………………...(1)
We also assume, $x = \log 8$
We know that,$\log \left( {{a^b}} \right) = b\log a$
Using this in above, we get
\[
x = \log \left( {{2^3}} \right) = 3\log 2 \\
\Rightarrow \dfrac{x}{3} = \log 2 \\
\] …………………….(2)
Form equations (1) and (2) , we get
\[
y = \log 2 + \log 3 = \dfrac{x}{3} + \log 3 \\
\Rightarrow \log 3 = y - \dfrac{x}{3} \\
\] ……………………..(3)
Now we try to evaluate each given part using the above obtained values in equations (2) and (3).
In part (A), we have
$\log 64$
Using $\log \left( {{a^b}} \right) = b\log a$ and equation (2) in above, we get
$\log {2^6} = 6\log 2 = 6 \times \dfrac{x}{3} = 2x$
Given we know the value of x, the above part can be calculated using given logarithms.
In part (B), we have
$\log 21$
Using $\log \left( {a \times b} \right) = \log a + \log b$in above, we get
$\log 21 = \log 7 \times 3 = \log 7 + \log 3$
In the above equation, we are not given the value of $\log 7$, hence we cannot find the value of this part without using the log table.
In part (C), we have
$\log \dfrac{8}{3}$
Using $\log \left( {\dfrac{a}{b}} \right) = \log a - \log b$ , $\log \left( {{a^b}} \right) = b\log a$, equation (2) and (3) in above, we get
$\log \dfrac{8}{3} = \log 8 - \log 3 = 3\log 2 - \log 3 = x - y + \dfrac{x}{3}$
Given we know the value of x and y, the above part can be calculated using given logarithms.
In part (D), we have
$\log 9$
Using $\log \left( {{a^b}} \right) = b\log a$ and equation (3) in above, we get
$\log {3^2} = 2\log 3 = 2y - \dfrac{{2x}}{3}$
Given we know the value of x and y, the above part can be calculated using given logarithms.
Hence only part (B) cannot be calculated without using the table in the above problem.
Note: The properties of logarithm should be kept in mind while solving the problems like above. The logarithm value can change with the change in the base. Hence it is crucial to convert base when necessary.
Complete step-by-step answer:
Given the values of $\log 6$ and $\log 8$. We need to find the values of another logarithm using them.
Let us assume, $y = \log 6$
We know that,$\log \left( {a \times b} \right) = \log a + \log b$.
Using this in above, we get
$y = \log \left( {2 \times 3} \right) = \log 2 + \log 3$ ………………...(1)
We also assume, $x = \log 8$
We know that,$\log \left( {{a^b}} \right) = b\log a$
Using this in above, we get
\[
x = \log \left( {{2^3}} \right) = 3\log 2 \\
\Rightarrow \dfrac{x}{3} = \log 2 \\
\] …………………….(2)
Form equations (1) and (2) , we get
\[
y = \log 2 + \log 3 = \dfrac{x}{3} + \log 3 \\
\Rightarrow \log 3 = y - \dfrac{x}{3} \\
\] ……………………..(3)
Now we try to evaluate each given part using the above obtained values in equations (2) and (3).
In part (A), we have
$\log 64$
Using $\log \left( {{a^b}} \right) = b\log a$ and equation (2) in above, we get
$\log {2^6} = 6\log 2 = 6 \times \dfrac{x}{3} = 2x$
Given we know the value of x, the above part can be calculated using given logarithms.
In part (B), we have
$\log 21$
Using $\log \left( {a \times b} \right) = \log a + \log b$in above, we get
$\log 21 = \log 7 \times 3 = \log 7 + \log 3$
In the above equation, we are not given the value of $\log 7$, hence we cannot find the value of this part without using the log table.
In part (C), we have
$\log \dfrac{8}{3}$
Using $\log \left( {\dfrac{a}{b}} \right) = \log a - \log b$ , $\log \left( {{a^b}} \right) = b\log a$, equation (2) and (3) in above, we get
$\log \dfrac{8}{3} = \log 8 - \log 3 = 3\log 2 - \log 3 = x - y + \dfrac{x}{3}$
Given we know the value of x and y, the above part can be calculated using given logarithms.
In part (D), we have
$\log 9$
Using $\log \left( {{a^b}} \right) = b\log a$ and equation (3) in above, we get
$\log {3^2} = 2\log 3 = 2y - \dfrac{{2x}}{3}$
Given we know the value of x and y, the above part can be calculated using given logarithms.
Hence only part (B) cannot be calculated without using the table in the above problem.
Note: The properties of logarithm should be kept in mind while solving the problems like above. The logarithm value can change with the change in the base. Hence it is crucial to convert base when necessary.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Write an application to the principal requesting five class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

