Answer
Verified
408.6k+ views
Hint:Here we have to factorize the question by using mathematical properties, such a quadratic equation can also be solved by the sridharacharya rule, and here you can use them for finding the solution of the equation. For finding factors you have to rearrange the term so as to obtain the factors by taking common or doing some adjustments.
Complete step by step answer:
Here, for the given equation we have to do some rearrangement by taking common of the number which is common in both terms, and then we can easily see that it is becoming an equation which can be easily solved by algebraic identity say:
\[ \Rightarrow {a^2} - {b^2} = (a + b)(a - b)\]
On solving we get:
\[3{x^2} - 27 = 0 \\
\Rightarrow 3({x^2} - 9) = 0 \\
\Rightarrow 3({x^2} - {3^2}) = 0 \\
\Rightarrow 3(x - 3)(x + 3) = 0 \\
\Rightarrow (x - 3)(x + 3) = 0 \\
\therefore x = 3, - 3 \]
So the solution for the above equation is \[3, - 3\].
Hence, the factors of the equation are \[(x + 3),(x - 3)\].
Additional Information:
Mid term split method is easy to find, but here it cant be applied because in the mid term equation the middle term is needed to break it into two parts to obtain the conditions but here for this question the middle term is not present.
Note: In two variable questions it will work but make the question very complicated, so you have to be careful while using the highest common factor method. This method is fast and easy to use but is applicable to certain specific question only and in this question it can be applied very easily.Example of this method could be a three variable algebraic equation like: \[xyz + xy \]
Complete step by step answer:
Here, for the given equation we have to do some rearrangement by taking common of the number which is common in both terms, and then we can easily see that it is becoming an equation which can be easily solved by algebraic identity say:
\[ \Rightarrow {a^2} - {b^2} = (a + b)(a - b)\]
On solving we get:
\[3{x^2} - 27 = 0 \\
\Rightarrow 3({x^2} - 9) = 0 \\
\Rightarrow 3({x^2} - {3^2}) = 0 \\
\Rightarrow 3(x - 3)(x + 3) = 0 \\
\Rightarrow (x - 3)(x + 3) = 0 \\
\therefore x = 3, - 3 \]
So the solution for the above equation is \[3, - 3\].
Hence, the factors of the equation are \[(x + 3),(x - 3)\].
Additional Information:
Mid term split method is easy to find, but here it cant be applied because in the mid term equation the middle term is needed to break it into two parts to obtain the conditions but here for this question the middle term is not present.
Note: In two variable questions it will work but make the question very complicated, so you have to be careful while using the highest common factor method. This method is fast and easy to use but is applicable to certain specific question only and in this question it can be applied very easily.Example of this method could be a three variable algebraic equation like: \[xyz + xy \]
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE