Answer

Verified

373.2k+ views

**Hint:**

Here, we will substitute the values of the given variable in the given equation. We will then simplify it using the exponent rule. We will then use the basic mathematical operation to get the simplified value of \[R\]. Then we will write the answer to an appropriate degree of accuracy by observing the position of the decimal point in the question. The appropriate degree of accuracy is a measure of how close and correct a stated value is to the actual, real value being described.

**Complete step by step solution:**

It is given that \[R = \dfrac{{{x^2}}}{y}\], where, \[x = 3.8 \times {10^5}\] and \[y = 5.9 \times {10^4}\]

Substituting these values in \[R\], we get,

\[R = \dfrac{{{{\left( {3.8 \times {{10}^5}} \right)}^2}}}{{5.9 \times {{10}^4}}}\]

Using the identity \[{\left( {a \times b} \right)^m} = {a^m} \times {b^m}\] and \[{\left( {{a^m}} \right)^n} = {a^{m \times n}}\], we get,

\[ \Rightarrow R = \dfrac{{{{\left( {3.8} \right)}^2} \times {{10}^{5 \times 2}}}}{{5.9 \times {{10}^4}}} = \dfrac{{14.44 \times {{10}^{10}}}}{{5.9 \times {{10}^4}}}\]

Now, using the identity \[\dfrac{{{a^m}}}{{{a^n}}} = {a^{m - n}}\] and dividing \[14.44\] by \[5.9\], we get,

\[ \Rightarrow R = 2.447 \times {10^{10 - 4}} = 2.447 \times {10^6}\]

Now, we can see that the decimal values given in the question in \[x\] and \[y\] are to 1 decimal place, thus, we will give our answer to an appropriate degree of accuracy to 1 decimal place only.

Thus, we get,

\[R = 2.447 \times {10^6} \approx 2.4 \times {10^6}\]

**Hence, the value of \[R\] giving an answer in standard form to an appropriate degree of accuracy is \[2.4 \times {10^6}\].**

Thus, this is the required answer.

Thus, this is the required answer.

**Note:**

Accuracy may be affected by rounding, the use of significant figures or ranges in measurement. In maths “to an appropriate degree of accuracy” means that the question wants us to present our answer in the same form as the least accurate measure in the question. Also, we should know that the accuracy of a measurement or approximation is the degree of closeness to the exact value whereas the error is the difference between the approximation and the exact value. Hence, approximation and error are complete different terms.

Recently Updated Pages

If O is the origin and OP and OQ are the tangents from class 10 maths CBSE

Let PQ be the focal chord of the parabola y24ax The class 10 maths CBSE

Which of the following picture is not a 3D figure a class 10 maths CBSE

What are the three theories on how Earth was forme class 10 physics CBSE

How many faces edges and vertices are in an octagonal class 10 maths CBSE

How do you evaluate cot left dfrac4pi 3 right class 10 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write the 6 fundamental rights of India and explain in detail

Name 10 Living and Non living things class 9 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths