Answer
Verified
446.4k+ views
Hint: Irrational numbers are a real number that, when expressed as a decimal, 90 on after (forever) after the decimal and never repeat.
Irrational are the real numbers that cannot be represented as a simple fraction It cannot be expressed in the form of a ratio such as \[\dfrac{p}{q}\] where p & q are
Integers, \[q \ne o\] it is a contradiction of rational numbers
For example, \[\sqrt 5 ,\sqrt {11} ,\sqrt {21} \]etc are irrational numbers
Properties of irrational number
1) The addition of an irrational number and rational number gives an irrational number for example \[x = \] irrational\[y = \] rational
\[ \Rightarrow x + y = \] irrational number
2) Multiplication of any irrational number with non-zero rational number results is an irrational number example \[x = \] irrational \[y = \] rational
\[ \Rightarrow x + y = \]irrational
The LCM of two irrational number may or may NOT exists.
The addition or multiplication of two irrational numbers may be rational for example \[\sqrt 2 .\sqrt 2 = 2\] Here \[\sqrt 2 \] is irrational 2 is rational.
Complete step by step answer:
Let us take
\[(\sqrt 3 ,\sqrt 3 )\] are irrational numbers.
Difference b/w \[(\sqrt 3 ,\& - \sqrt 3 \]
\[ = \sqrt 3 , - \sqrt 3 \]
\[ = \sqrt 3 + \sqrt 3 \]
\[ = \sqrt[2]{3}\](irrational number)
Difference between \[\sqrt 5 , - \sqrt 5 \] (irrational number)
\[ \Rightarrow \sqrt 3 - ( - \sqrt 5 )\]
\[ = \sqrt 5 + \sqrt 5 \]
\[ = \sqrt[2]{5}\] (irrational number)
\[\sqrt[4]{3}, - \sqrt[2]{3}\]
difference between \[\sqrt[4]{3} - ( - \sqrt[2]{3}) = \sqrt[6]{3}\] irrational number
Above all options A, B, C are the example of irrational numbers whose difference is an irrational number.
Note:
The decimal expansion of an irrational number is neither terminating nor recurring
Pi\[(\pi )\] is an irrational number because it is non-terminating the approximate value of pi is
The set of an irrational number is NOT closed under the multiplication process unlike the set of rational numbers.
Integers are a rational number but Not irrational.
\[\pi = 3.14159265358\]
\[e = 2.718281845\] are irrational numbers.
An irrational number is represented by using the set difference of the real minus rational numbers in a way \[R - Q\]
Irrational are the real numbers that cannot be represented as a simple fraction It cannot be expressed in the form of a ratio such as \[\dfrac{p}{q}\] where p & q are
Integers, \[q \ne o\] it is a contradiction of rational numbers
For example, \[\sqrt 5 ,\sqrt {11} ,\sqrt {21} \]etc are irrational numbers
Properties of irrational number
1) The addition of an irrational number and rational number gives an irrational number for example \[x = \] irrational\[y = \] rational
\[ \Rightarrow x + y = \] irrational number
2) Multiplication of any irrational number with non-zero rational number results is an irrational number example \[x = \] irrational \[y = \] rational
\[ \Rightarrow x + y = \]irrational
The LCM of two irrational number may or may NOT exists.
The addition or multiplication of two irrational numbers may be rational for example \[\sqrt 2 .\sqrt 2 = 2\] Here \[\sqrt 2 \] is irrational 2 is rational.
Complete step by step answer:
Let us take
\[(\sqrt 3 ,\sqrt 3 )\] are irrational numbers.
Difference b/w \[(\sqrt 3 ,\& - \sqrt 3 \]
\[ = \sqrt 3 , - \sqrt 3 \]
\[ = \sqrt 3 + \sqrt 3 \]
\[ = \sqrt[2]{3}\](irrational number)
Difference between \[\sqrt 5 , - \sqrt 5 \] (irrational number)
\[ \Rightarrow \sqrt 3 - ( - \sqrt 5 )\]
\[ = \sqrt 5 + \sqrt 5 \]
\[ = \sqrt[2]{5}\] (irrational number)
\[\sqrt[4]{3}, - \sqrt[2]{3}\]
difference between \[\sqrt[4]{3} - ( - \sqrt[2]{3}) = \sqrt[6]{3}\] irrational number
Above all options A, B, C are the example of irrational numbers whose difference is an irrational number.
Note:
The decimal expansion of an irrational number is neither terminating nor recurring
Pi\[(\pi )\] is an irrational number because it is non-terminating the approximate value of pi is
The set of an irrational number is NOT closed under the multiplication process unlike the set of rational numbers.
Integers are a rational number but Not irrational.
\[\pi = 3.14159265358\]
\[e = 2.718281845\] are irrational numbers.
An irrational number is represented by using the set difference of the real minus rational numbers in a way \[R - Q\]
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference Between Plant Cell and Animal Cell
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE