From the top of a 7 m high building, the angle of elevation of the top of a cable tower is ${60^0}$ and the angle of depression of its foot is ${45^0}$ . Determine the height of the tower.
Last updated date: 23rd Mar 2023
•
Total views: 306k
•
Views today: 7.83k
Answer
306k+ views
Hint- Figure is must in such types of questions. We will use a simple definition of trigonometric angles of a right angled triangle along with the data given. Just as in a right angled triangle tangent of an angle is the length of height upon length of the base of the triangle.
Complete step-by-step solution -
The diagram show above shows the exact model of the data given in the question
AB = Building =7 m (given)
CD = Cable tower
AC = Horizontal line parallel to ground level
As we know that
$\tan \theta = \dfrac{{{\text{perpendicular height}}}}{{{\text{base}}}}$
In order to find AE or correspondingly to find BC, we have:
In $\Delta ABC$
$
\tan \angle ACB = \dfrac{{AB}}{{BC}} \\
\Rightarrow \tan {45^0} = \dfrac{{AB}}{{BC}} \\
\Rightarrow \dfrac{{AB}}{{BC}} = 1\left[ {\because \tan {{45}^0} = 1} \right] \\
\Rightarrow AB = BC = 7m\left[ {\because AB = 7m({\text{given}})} \right] \\
$
So we also have
$AE = BC = 7m$
Now in order to find DE we have:
In $\Delta AED$
$
\tan \angle DAE = \dfrac{{DE}}{{AE}} \\
\Rightarrow \tan {60^0} = \dfrac{{DE}}{{AE}} \\
\Rightarrow \dfrac{{DE}}{{AE}} = \sqrt 3 \left[ {\because \tan {{60}^0} = \sqrt 3 } \right] \\
\Rightarrow DE = AE\left( {\sqrt 3 } \right) = 7\left( {\sqrt 3 } \right)m\left[ {\because AE = 7m({\text{found}})} \right] \\
$
Now finding the height of the cable tower = CD
\[
\Rightarrow CD = CE + DE \\
\Rightarrow CD = AB + DE\left[ {\because CE = AB} \right] \\
\Rightarrow CD = 7m + 7\sqrt 3 m \\
\Rightarrow CD = 7\left( {1 + \sqrt 3 } \right)m \\
\Rightarrow CD = 7\left( {1 + 1.732} \right)m\left[ {\because \sqrt 3 = 1.732} \right] \\
\Rightarrow CD = 7\left( {2.732} \right)m \\
\Rightarrow CD = 19.124m \\
\]
Hence, the height of the cable tower is 19.124 m.
Note- In order to solve such kinds of questions related to practical application of heights and distances figures play a major role in easier simplification of the problem. If this question was not solved by figures, it could be very hectic to solve though. Always remember the values of trigonometric functions of some special angles, two of them are mentioned above. Try to solve the problem in parts.
Complete step-by-step solution -

The diagram show above shows the exact model of the data given in the question
AB = Building =7 m (given)
CD = Cable tower
AC = Horizontal line parallel to ground level
As we know that
$\tan \theta = \dfrac{{{\text{perpendicular height}}}}{{{\text{base}}}}$
In order to find AE or correspondingly to find BC, we have:
In $\Delta ABC$
$
\tan \angle ACB = \dfrac{{AB}}{{BC}} \\
\Rightarrow \tan {45^0} = \dfrac{{AB}}{{BC}} \\
\Rightarrow \dfrac{{AB}}{{BC}} = 1\left[ {\because \tan {{45}^0} = 1} \right] \\
\Rightarrow AB = BC = 7m\left[ {\because AB = 7m({\text{given}})} \right] \\
$
So we also have
$AE = BC = 7m$
Now in order to find DE we have:
In $\Delta AED$
$
\tan \angle DAE = \dfrac{{DE}}{{AE}} \\
\Rightarrow \tan {60^0} = \dfrac{{DE}}{{AE}} \\
\Rightarrow \dfrac{{DE}}{{AE}} = \sqrt 3 \left[ {\because \tan {{60}^0} = \sqrt 3 } \right] \\
\Rightarrow DE = AE\left( {\sqrt 3 } \right) = 7\left( {\sqrt 3 } \right)m\left[ {\because AE = 7m({\text{found}})} \right] \\
$
Now finding the height of the cable tower = CD
\[
\Rightarrow CD = CE + DE \\
\Rightarrow CD = AB + DE\left[ {\because CE = AB} \right] \\
\Rightarrow CD = 7m + 7\sqrt 3 m \\
\Rightarrow CD = 7\left( {1 + \sqrt 3 } \right)m \\
\Rightarrow CD = 7\left( {1 + 1.732} \right)m\left[ {\because \sqrt 3 = 1.732} \right] \\
\Rightarrow CD = 7\left( {2.732} \right)m \\
\Rightarrow CD = 19.124m \\
\]
Hence, the height of the cable tower is 19.124 m.
Note- In order to solve such kinds of questions related to practical application of heights and distances figures play a major role in easier simplification of the problem. If this question was not solved by figures, it could be very hectic to solve though. Always remember the values of trigonometric functions of some special angles, two of them are mentioned above. Try to solve the problem in parts.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
