Answer
Verified
381.6k+ views
Hint: The area can be defined as the space occupied by a flat surface of an object. The area is the number of unit squares closed by figure. Perimeter is the total length of the sides of the two dimensional shape. Perimeter is always less than the area of the given figure. Because the perimeter is outer and the area is inner property. Volume is the capacity which hold by objects
As we know that
$\therefore V = \dfrac{1}{3}\pi {r^2}h$
Here
V=volume
r=radius
h=height
Complete step-by-step solution:
Given,
Diameter of cylinder,$d = 1.4cm$
Radius of cylinder, $r = \dfrac{{1.4}}{2}cm$
Radius of cylinder, $r = 0.7cm$
Height of cylinder, $h = 2.4cm$
Diameter of cone,$d = 1.4cm$
Radius of cone, $r = \dfrac{{1.4}}{2}cm$
Radius of cone, $r = 0.7cm$
Height of cone, $h = 2.4cm$
Volume=?
Now the volume of cylinder
As we know that
$\therefore V = \pi {r^2}h$
Put the value
\[ \Rightarrow V = \dfrac{{22}}{7} \times {(0.7)^2} \times 2.4\]
Simplify
\[ \Rightarrow V = 22 \times 0.7 \times 2.4\]
$ \Rightarrow {V_{cylinder}} = 36.96c{m^3}$
Now volume of cone
$\therefore V = \dfrac{1}{3}\pi {r^2}h$
Put the value
\[ \Rightarrow V = \dfrac{1}{3} \times \dfrac{{22}}{7} \times {(0.7)^2} \times 2.4\]
Simplify
\[ \Rightarrow V = 22 \times 0.7 \times 0.8\]
$ \Rightarrow {V_{cone}} = 12.32c{m^3}$
Volume remaining
$ \Rightarrow {V_{remaining}} = {V_{cylinder}} - {V_{cone}}$
Put the value
$ \Rightarrow {V_{remaining}} = 36.96 - 12.32$
$ \Rightarrow {V_{remaining}} = 24.64c{m^3}$
Now the total curved surface area of cylinder
As we know that
$\therefore 2\pi rh$
Put the value
$ \Rightarrow {A_{cylinder}} = 2 \times \dfrac{{22}}{7} \times 0.7 \times 2.4$
Simplify
$ \Rightarrow {A_{cylinder}} = 44 \times 0.1 \times 2.4$
\[ \Rightarrow {A_{cylinder}} = 10.56c{m^2}\]
Now curved surface area of cone,
$\therefore {A_{cone}} = \pi rl$
Now find the slant height l=
$\therefore l = \sqrt {{r^2} + {h^2}} $
Put the value
$ \Rightarrow l = \sqrt {{{(0.7)}^2} + {{(2.4)}^2}} $
$ \Rightarrow l = \sqrt {0.49 + 5.76} $
$ \Rightarrow l = \sqrt {6.25} $
$ \Rightarrow l = 2.5cm$
As we know that
$\therefore {A_{cone}} = \pi rl$
Put value
$ \Rightarrow {A_{cone}} = \dfrac{{22}}{7} \times 0.7 \times 2.5$
$ \Rightarrow {A_{cone}} = 2.2 \times 2.5$
$ \Rightarrow {A_{cone}} = 5.5c{m^2}$
Area of base is given by
As we know that
$\therefore {A_c} = \pi {r^2}$
Put the value
$ \Rightarrow {A_c} = \dfrac{{22}}{7} \times {(0.7)^2}$
Simplify
$ \Rightarrow {A_c} = \dfrac{{22}}{7} \times 0.7 \times 0.7$
$ \Rightarrow {A_c} = 2.2 \times 0.7$
$ \Rightarrow {A_c} = 1.54c{m^2}$
Total curved surface area
$\therefore {A_T} = {A_{cylinder}} + {A_{cone}} + {A_{circle}}$
Put the value
$ \Rightarrow {A_T} = 10.56 + 5.5 + 1.54$
$ \Rightarrow {A_T} = 17.6c{m^2}$
Hence the total surface area of cylinder is\[17.6c{m^2}\]
Note: Curved surface area means it covered the area or curved surface. It leaves that area of base of top and bottom. When we talk about the total surface area the area of base and curved surface area will include. There is no parameter of 3-D geometry.
As we know that
$\therefore V = \dfrac{1}{3}\pi {r^2}h$
Here
V=volume
r=radius
h=height
Complete step-by-step solution:
Given,
Diameter of cylinder,$d = 1.4cm$
Radius of cylinder, $r = \dfrac{{1.4}}{2}cm$
Radius of cylinder, $r = 0.7cm$
Height of cylinder, $h = 2.4cm$
Diameter of cone,$d = 1.4cm$
Radius of cone, $r = \dfrac{{1.4}}{2}cm$
Radius of cone, $r = 0.7cm$
Height of cone, $h = 2.4cm$
Volume=?
Now the volume of cylinder
As we know that
$\therefore V = \pi {r^2}h$
Put the value
\[ \Rightarrow V = \dfrac{{22}}{7} \times {(0.7)^2} \times 2.4\]
Simplify
\[ \Rightarrow V = 22 \times 0.7 \times 2.4\]
$ \Rightarrow {V_{cylinder}} = 36.96c{m^3}$
Now volume of cone
$\therefore V = \dfrac{1}{3}\pi {r^2}h$
Put the value
\[ \Rightarrow V = \dfrac{1}{3} \times \dfrac{{22}}{7} \times {(0.7)^2} \times 2.4\]
Simplify
\[ \Rightarrow V = 22 \times 0.7 \times 0.8\]
$ \Rightarrow {V_{cone}} = 12.32c{m^3}$
Volume remaining
$ \Rightarrow {V_{remaining}} = {V_{cylinder}} - {V_{cone}}$
Put the value
$ \Rightarrow {V_{remaining}} = 36.96 - 12.32$
$ \Rightarrow {V_{remaining}} = 24.64c{m^3}$
Now the total curved surface area of cylinder
As we know that
$\therefore 2\pi rh$
Put the value
$ \Rightarrow {A_{cylinder}} = 2 \times \dfrac{{22}}{7} \times 0.7 \times 2.4$
Simplify
$ \Rightarrow {A_{cylinder}} = 44 \times 0.1 \times 2.4$
\[ \Rightarrow {A_{cylinder}} = 10.56c{m^2}\]
Now curved surface area of cone,
$\therefore {A_{cone}} = \pi rl$
Now find the slant height l=
$\therefore l = \sqrt {{r^2} + {h^2}} $
Put the value
$ \Rightarrow l = \sqrt {{{(0.7)}^2} + {{(2.4)}^2}} $
$ \Rightarrow l = \sqrt {0.49 + 5.76} $
$ \Rightarrow l = \sqrt {6.25} $
$ \Rightarrow l = 2.5cm$
As we know that
$\therefore {A_{cone}} = \pi rl$
Put value
$ \Rightarrow {A_{cone}} = \dfrac{{22}}{7} \times 0.7 \times 2.5$
$ \Rightarrow {A_{cone}} = 2.2 \times 2.5$
$ \Rightarrow {A_{cone}} = 5.5c{m^2}$
Area of base is given by
As we know that
$\therefore {A_c} = \pi {r^2}$
Put the value
$ \Rightarrow {A_c} = \dfrac{{22}}{7} \times {(0.7)^2}$
Simplify
$ \Rightarrow {A_c} = \dfrac{{22}}{7} \times 0.7 \times 0.7$
$ \Rightarrow {A_c} = 2.2 \times 0.7$
$ \Rightarrow {A_c} = 1.54c{m^2}$
Total curved surface area
$\therefore {A_T} = {A_{cylinder}} + {A_{cone}} + {A_{circle}}$
Put the value
$ \Rightarrow {A_T} = 10.56 + 5.5 + 1.54$
$ \Rightarrow {A_T} = 17.6c{m^2}$
Hence the total surface area of cylinder is\[17.6c{m^2}\]
Note: Curved surface area means it covered the area or curved surface. It leaves that area of base of top and bottom. When we talk about the total surface area the area of base and curved surface area will include. There is no parameter of 3-D geometry.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Who was the Governor general of India at the time of class 11 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference Between Plant Cell and Animal Cell