
What is the formula to solve the general form of quadratic equation and what is its discriminant value?
Answer
504.3k+ views
Hint: In this problem, we can see the formula to solve the general form of the quadratic equation and what its discriminant value is. We should know that the general quadratic equation is of the form \[a{{x}^{2}}+bx+c=0\], where a, b, c are constant terms and a is not equal to zero. here we can see the formula which is used to solve the quadratic equation and its discriminant values.
Complete step by step answer:
Here we can see the formula to solve the general form of the quadratic equation and what its discriminant value is.
We should know that the general quadratic equation is of the form,
\[a{{x}^{2}}+bx+c=0\]
We can solve this type of quadratic equation using the quadratic formula,
\[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
We can also write it as,
\[x=\dfrac{-b\pm \sqrt{D}}{2a}\]
Where, the discriminant is denoted as \[\Delta \],
\[\Delta ={{b}^{2}}-4ac\]
We should know that,
If the discriminant value is equal 0, \[\Delta =0\]
Then we will have two real and equal roots (i.e. one real root).
If the discriminant value is greater than 0, \[\Delta >0\]
Then we will have two real and unequal roots.
If the discriminant value is less than 0, \[\Delta <0\]
Then we will have no real roots (imaginary roots).
Therefore, the formula to solve a general quadratic equation \[a{{x}^{2}}+bx+c=0\] is \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\], where the discriminant is \[\Delta ={{b}^{2}}-4ac\].
Note: We should always remember the condition of the discriminants which tells the type of roots, when the discriminant is equal to zero, the equation has one real root, when the discriminant is less than 0, it has no real roots and when the discriminant is greater than 0, then it has two real roots.
Complete step by step answer:
Here we can see the formula to solve the general form of the quadratic equation and what its discriminant value is.
We should know that the general quadratic equation is of the form,
\[a{{x}^{2}}+bx+c=0\]
We can solve this type of quadratic equation using the quadratic formula,
\[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
We can also write it as,
\[x=\dfrac{-b\pm \sqrt{D}}{2a}\]
Where, the discriminant is denoted as \[\Delta \],
\[\Delta ={{b}^{2}}-4ac\]
We should know that,
If the discriminant value is equal 0, \[\Delta =0\]
Then we will have two real and equal roots (i.e. one real root).
If the discriminant value is greater than 0, \[\Delta >0\]
Then we will have two real and unequal roots.
If the discriminant value is less than 0, \[\Delta <0\]
Then we will have no real roots (imaginary roots).
Therefore, the formula to solve a general quadratic equation \[a{{x}^{2}}+bx+c=0\] is \[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\], where the discriminant is \[\Delta ={{b}^{2}}-4ac\].
Note: We should always remember the condition of the discriminants which tells the type of roots, when the discriminant is equal to zero, the equation has one real root, when the discriminant is less than 0, it has no real roots and when the discriminant is greater than 0, then it has two real roots.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

