
For what values of m does the system of equations $3x + my = m$ and $2x - 5y = 20$ have the solution satisfying the conditions $x > 0,y > 0$
Answer
476.7k+ views
Hint: To solve this question, we will use the concept of a pair of linear equations in two variables. We will use the method of elimination by substitution in this system of equations to find out the values of m. We will also use some inequality rules.
Complete step-by-step answer:
Given that,
$ \Rightarrow 3x + my = m$ …… (i)
$ \Rightarrow 2x - 5y = 20$ …… (ii)
From equation (ii),
$ \Rightarrow 2x = 20 + 5y$
$ \Rightarrow x = \dfrac{{20 + 5y}}{2}$ …… (iii)
Putting the value of x from equation (iii) in equation (i), we will get
$ \Rightarrow 3\left( {\dfrac{{20 + 5y}}{2}} \right) + my = m$
$ \Rightarrow \dfrac{{60 + 15y}}{2} + my = m$
Taking 2 as L.C.M,
$ \Rightarrow \dfrac{{60 + 15y + 2my}}{2} = m$
Now, shifting 2 from L.H.S to R.H.S,
$ \Rightarrow 60 + 15y + 2my = 2m$
$ \Rightarrow 15y + 2my = 2m - 60$
Separating the equation to eliminate y, we will get
$ \Rightarrow y\left( {15 + 2m} \right) = 2m - 60$
$ \Rightarrow y = \dfrac{{2m - 60}}{{15 + 2m}}$ ……. (iv)
Here we get, $x = \dfrac{{20 + 5y}}{2}$ and $y = \dfrac{{2m - 60}}{{15 + 2m}}$
Now, according to the question
$ \Rightarrow x > 0$ …. (v)
$ \Rightarrow y > 0$ ….. (vi)
Putting the value of y in equation (vi), we will get
$ \Rightarrow \dfrac{{2m - 60}}{{15 + 2m}} > 0$
Multiplying and dividing both sides by 15 + 2m,
$ \Rightarrow \dfrac{{\left( {2m - 60} \right)\left( {15 + 2m} \right)}}{{{{\left( {15 + 2m} \right)}^2}}} > 0$
This can be written as:
$ \Rightarrow \left( {2m - 60} \right)\left( {15 + 2m} \right) > 0$
Taking 2 common from both brackets,
$ \Rightarrow 4\left( {m - 30} \right)\left( {\dfrac{{15}}{2} + m} \right) > 0$
From this, we can say that
$ \Rightarrow m - 30 > 0$ or ……. (vii)
$ \Rightarrow \dfrac{{15}}{2} + m > 0$ …… (viii)
Adding 30 both sides in equation (vii),
$ \Rightarrow m - 30 + 30 > 0 + 30$
$ \Rightarrow m > 30$
As we know that when both sides are divided or multiplied by a negative number then the inequality gets reversed.
So, the equation (viii) will become,
$ \Rightarrow m < \dfrac{{ - 15}}{2}$
Hence, the values of m form which it satisfies the given system of equations are $m > 30$ and $m < \dfrac{{ - 15}}{2}$
Note: Whenever we ask such types of questions, we have to remember the substitution method. In this method, one of the variables in terms of another variable from either of the two equations and then this expression is put in another equation to obtain an equation in one variable.
Complete step-by-step answer:
Given that,
$ \Rightarrow 3x + my = m$ …… (i)
$ \Rightarrow 2x - 5y = 20$ …… (ii)
From equation (ii),
$ \Rightarrow 2x = 20 + 5y$
$ \Rightarrow x = \dfrac{{20 + 5y}}{2}$ …… (iii)
Putting the value of x from equation (iii) in equation (i), we will get
$ \Rightarrow 3\left( {\dfrac{{20 + 5y}}{2}} \right) + my = m$
$ \Rightarrow \dfrac{{60 + 15y}}{2} + my = m$
Taking 2 as L.C.M,
$ \Rightarrow \dfrac{{60 + 15y + 2my}}{2} = m$
Now, shifting 2 from L.H.S to R.H.S,
$ \Rightarrow 60 + 15y + 2my = 2m$
$ \Rightarrow 15y + 2my = 2m - 60$
Separating the equation to eliminate y, we will get
$ \Rightarrow y\left( {15 + 2m} \right) = 2m - 60$
$ \Rightarrow y = \dfrac{{2m - 60}}{{15 + 2m}}$ ……. (iv)
Here we get, $x = \dfrac{{20 + 5y}}{2}$ and $y = \dfrac{{2m - 60}}{{15 + 2m}}$
Now, according to the question
$ \Rightarrow x > 0$ …. (v)
$ \Rightarrow y > 0$ ….. (vi)
Putting the value of y in equation (vi), we will get
$ \Rightarrow \dfrac{{2m - 60}}{{15 + 2m}} > 0$
Multiplying and dividing both sides by 15 + 2m,
$ \Rightarrow \dfrac{{\left( {2m - 60} \right)\left( {15 + 2m} \right)}}{{{{\left( {15 + 2m} \right)}^2}}} > 0$
This can be written as:
$ \Rightarrow \left( {2m - 60} \right)\left( {15 + 2m} \right) > 0$
Taking 2 common from both brackets,
$ \Rightarrow 4\left( {m - 30} \right)\left( {\dfrac{{15}}{2} + m} \right) > 0$
From this, we can say that
$ \Rightarrow m - 30 > 0$ or ……. (vii)
$ \Rightarrow \dfrac{{15}}{2} + m > 0$ …… (viii)
Adding 30 both sides in equation (vii),
$ \Rightarrow m - 30 + 30 > 0 + 30$
$ \Rightarrow m > 30$
As we know that when both sides are divided or multiplied by a negative number then the inequality gets reversed.
So, the equation (viii) will become,
$ \Rightarrow m < \dfrac{{ - 15}}{2}$
Hence, the values of m form which it satisfies the given system of equations are $m > 30$ and $m < \dfrac{{ - 15}}{2}$
Note: Whenever we ask such types of questions, we have to remember the substitution method. In this method, one of the variables in terms of another variable from either of the two equations and then this expression is put in another equation to obtain an equation in one variable.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE

The area of a 6m wide road outside a garden in all class 10 maths CBSE

What is the electric flux through a cube of side 1 class 10 physics CBSE

If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE

The radius and height of a cylinder are in the ratio class 10 maths CBSE

An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE

Trending doubts
What did the military generals do How did their attitude class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

For Frost what do fire and ice stand for Here are some class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE
