
For what values of k will ${\text{k + 9, 2k - 1 and 2k + 7 }}$ are consecutive terms of an A.P.?
Answer
605.7k+ views
Hint: Use the properties of Arithmetic Progression. i.e. The difference between any two consecutive terms of an arithmetic progression is constant.
Complete step-by-step answer:
In the given question, it is given the three consecutive terms of an arithmetic progression in terms of a variable k.
For an arithmetic progression, we know the relation between two consecutive terms.
It is given as:
The difference between any two consecutive terms of an arithmetic progression is a constant value.
So, using this relation we will first find the difference between first term and second term and then find the difference between second term and third term.
So, on finding the difference between first term and second term, we get
$(2{\text{k - 1) - (k + 9) = 2k - 1 - k - 9 = k - 10}}$ . (1)
Now, we will find the difference between second term and third term, which is given as:
$(2{\text{k + 7) - (2k - 1) = 2k + 7 - 2k + 1 = 8}}$ (2)
Since the given three terms of the A.P. are consecutive terms. Therefore:
Second term – first term = Third term – Second term.
So, putting the values from (1) and (2), we get:
$
{\text{k - 10 = 8}} \\
\Rightarrow {\text{k = 18}} \\
$
Therefore, for k=18, the given three consecutive numbers are in arithmetic progression.
Note: In this type of question where three consecutive terms of an A.P. are given in terms of an unknown parameter then for finding the value of the unknown parameter, we will use the relation between the consecutive terms of an arithmetic progression. The difference between any two consecutive terms of an A.P. is constant.
Complete step-by-step answer:
In the given question, it is given the three consecutive terms of an arithmetic progression in terms of a variable k.
For an arithmetic progression, we know the relation between two consecutive terms.
It is given as:
The difference between any two consecutive terms of an arithmetic progression is a constant value.
So, using this relation we will first find the difference between first term and second term and then find the difference between second term and third term.
So, on finding the difference between first term and second term, we get
$(2{\text{k - 1) - (k + 9) = 2k - 1 - k - 9 = k - 10}}$ . (1)
Now, we will find the difference between second term and third term, which is given as:
$(2{\text{k + 7) - (2k - 1) = 2k + 7 - 2k + 1 = 8}}$ (2)
Since the given three terms of the A.P. are consecutive terms. Therefore:
Second term – first term = Third term – Second term.
So, putting the values from (1) and (2), we get:
$
{\text{k - 10 = 8}} \\
\Rightarrow {\text{k = 18}} \\
$
Therefore, for k=18, the given three consecutive numbers are in arithmetic progression.
Note: In this type of question where three consecutive terms of an A.P. are given in terms of an unknown parameter then for finding the value of the unknown parameter, we will use the relation between the consecutive terms of an arithmetic progression. The difference between any two consecutive terms of an A.P. is constant.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

